- ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:単位ベクトルの問題で分からないところがあります)
単位ベクトルの問題で分からないところがあります
このQ&Aのポイント
- OA↑(1,3)、OB↑(6、-2)のなす角を2等分する単位ベクトルを求めよ
- OA↑、OB↑と同じ向きの単位ベクトルをe1↑、e2↑とし、OA↑、OB↑を2等分するベクトルとしてe1↑+e2↑をつくると求めるe↑はe↑=(e1↑+e2↑)/(l e1↑+e2↑l)となる。
- OA↑、OB↑を2等分するベクトルとしてOA↑+OB↑をつくり、単位ベクトルe↑=(OA↑+OB↑)/(lOA↑+OB↑l)として解いてもよいと思ったが答えが違いました。なぜだめなのでしょうか?
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
ダメです。 |OB|=2√10,|OA|=√10なので, OA↑+OB↑は,OAとOBの方向の二等分線より,だいぶOBの方に寄っています。 OA方向とOB方向の二等分線にするためには,同じ長さにしてから足さないとダメですね。
その他の回答 (1)
- alice_44
- ベストアンサー率44% (2109/4759)
回答No.2
e1↑+e2↑ じゃなくても、 OA↑+(1/2)OB↑ とかでも いいってことだ。 二等辺三角形の中線になればね。
質問者
お礼
回答ありがとうございます 大きさが同じになるからですね
お礼
回答ありがとうございます よくわかりました