• 締切済み

中2数学、図形の問題です。教えてください。

長方形ABCDにおいて、辺AB上に点E、辺AD上に点Fがある。 辺BC、CDの上の点P,Qで、EP+PQ+QFが最も小さくなる点を求めなさい。 という問題の答えが、 辺BCに関して、点Eと対象な点をE’、辺CDに関して、点Fと対象な点をF'とし、 E'F'と辺BCとの交点をP、E'F'と辺CDとの交点をQとすると、 EP+PQ+QFが最も小さくなる。 でした。 しかし、どうしてそうなるのかがわかりません。 理由を(原理を)教えてください。 よろしくお願いします。

みんなの回答

  • asuncion
  • ベストアンサー率33% (2127/6290)
回答No.1

2点間の距離は、直線が いちばん小さいから。

関連するQ&A