ベストアンサー 教えて下さい 2003/12/13 20:46 線分ABがあり、PがBと一致するとき、これを見て思うのは角BAPが0度だけとおもうのでしょうか。但し、角Pと角Bは角なしとします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tnt ベストアンサー率40% (1358/3355) 2003/12/13 22:40 回答No.2 線分ABが1本しか引けない条件であれば、 0度、もしくは360度でしょうね。 基準の取り方によっては-360度とも 言えるかもしれません。 さて、線分ABが複数引ける条件ですが、 たとえば球面上の平面(曲面ですね)が該当します。 地球儀で南極(A)と北極(B)を結ぶ線を考えれば すぐにわかりますよね。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) albi79 ベストアンサー率5% (1/20) 2003/12/13 21:22 回答No.1 正確には「360°×n」(但しnは整数or0) じゃないですかね。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 教えて下さい 線分ABを直径とする円周上を動点Pがうごくとします。角BAPが角でなくなるときとか、角BAPがつくれないときという表現は使っていいでしょうか。もし使っていいとすると、線分PABの図を書いたときPとAに角なしとかいていいでしょうか。 PがAと一致しないとき角BAPはつくれるかPがAと一致しないときのみ角BAPはつくれるかがただしいか。 長さ1の線分ABを直径とする円周上を動点Pが動くではPがAと一致しないとき角BAPはつくれるという文章はあっていますかPがAと一致しないときのみ角BAPはつくれるの方がただしいのでしょうか。PがAと一致しないとき角BAPはつくれるはPがAと一致するときは文章だけでは角BAPがつくれるかつくれないかは分からないのでしょうか。例えば仮に母国にいるときデーブ・スペクターさんが日本語を話すかどうか分からない場合、日本にいるとき日本語を話すか日本にいるときのみ日本語を話すでなければならないのでしょうか。数学の答案にPがAと一致するときのみとメモをかくのはだめでしょうか。 教えて下さい 長さ1の線分ABを直径とする円周上を動点Pが動く場合。 PがAと一致するときは角BAPが角でないときという表現はおかしいらしいと教えてもらいましたが、PがAとBと一致しないときを、角APB=90度や三角形APBが直角三角形であるときや三角形APBがつくれるときや三角形APBが三角形であるときと言い換える表現はただしいでしょうか。またPがAと一致するときを角APBが直角でないときや三角形APBが直角三角形でないときや三角形APBがつくれないときや三角形APBが三角形でないときと言い換える表現はただしいでしょうか。教科書を丸暗記していると忘れたときこまるし、もし他の人がきょうかしょとちがう表現を言ってる場合もあると思うのでただ暗記するだけでなく理解してなければいけないとおもうのできいています。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 教えて下さい 長さ1の線分ABを直径とする円周上を動点Pが動くとき 2AP+3BPの最大値を求めよで、角BAP=Zとおく 隣辺/斜辺=COSZ 対辺/斜辺=SINZ この三角関数がわからないとします。しかし座標をつくって原点をA、第一象限内に長さ1の線分ABがAを中心として動き角BAX=Z とします。角BAXのXはX軸のことだとします。BからX軸に垂線を引き交点をPとします。B(X,Y)とします。X/AB=COSZ Y/AB=SINZとかんがえて解くことをおもいつきました。 AP/AB=X/AB、BP/AB=Y/AB ところでこの図の変形は一つでしたが、PがAと一致するとき、PがBと一致するとき、PがAとBと一致しない場合の3個の図をかいてそれぞれを変形させるのはおかしいでしょうか。但しどうしてもこの変形する考え方にするとします。またこの考え方をするのは結局は最初の考え方と一緒だからおかしいでしょうか。 細かいことがわからないのでおしえてください。 長さ1の線分ABを直径とする円周上をPが動くとき2AP+3BPの最大値を求めよという問題で、PがAと一致するとき2AP+3BP=3 PがAと一致しないとき、角BAP=XとおくとAP=COSX BP=SINX 2AP+3BP=ルート13SIN(X+A) よって最大値はルート13なのですが次に新しく 角BAP=XとおくにはPがAと異なる必要がある。残りはPがAと一致するときである。 PがAと一致するときと一致しないときに分けれると思うのですが、これは前と同じであると思いここでやめるのでしょうか。それとも新しくは考えないのでしょうか。 この問題の角度の範囲を教えて下さい 長さ1の線分ABを直径とする円周上をPが動くとき2AP+3BPの最大値を求めよという問題で、PがAとBと一致しないとき 角BAP=xとおくと AP=COSX,BP=SINX 2AP+3BP=2COSX+3SINX=ルート 13SIN(X+A) このとき0<X<90度 PがAと一致するとき、直角三角形がないので APノットイコールCOSX、BPノットイコールSINX、2AP+3BP=3 このとき0<X<90度 Pをもう一つ作るのはおかしいですか? PがBと一致するとき、直角三角形がないので APノットイコールCOSX、BPノットイコールSINX、2AP+3BP=2 このとき0<X<90度 あってますか。 よって最大値はルート13 教えて下さい 考える気力がなくなったのでたすけてください。 長さ1の線分ABを直径とする円周を動点Pが動くとき2AP+3BPの最大値を求めよという問題で PがAと一致するとき2AP+3BP=3 PがAと一致しないとき、直径に対する円周角は直角だから角BAP=XとおくとAP=COSX、BP=SINX 2AP+3BP=ROOT13SIN(X+A) COSA=3/ROOT13、SINA=2/ROOT13 0<X<90度より、A<X+A<90度+A Aは鋭角より、A<90度<90度+A X+A=90度のときSIN(X+A)の最大値は1 よって2AP+3BPの最大値はROOT13 という答案でPがAと一致するときを角ABPが0度のとき、PがAと一致しないときを角ABPが0度以上90度より小さいとするのは、絶対駄目な不自然なようなきがするのですが自信がありません。ただマニュアルの通りにしろじゃなくてどうしておかしいかしりたいです。それともこれでもいいのでしょうか。 つまらないことですが教えて下さい 線分ABを直径とする円周上をPが動きます。角ABPが0度でないとは、PがAと異なるときですか。それともPがAとBと異なるときですか。つまり”角ABPが0度”でないは、PがAとことなるでしょうか。角ABPが、0度でないは、PがAとBとことなるでしょうか。読み方で解釈が違いますか。そんなことはないですか。 三角比の問題 三角比を使う問題で、よくわからないので教えてください!! 円に外接する3角形ABCがある。円上に点A、B、C、Pがあり、 AB=6cm、AC=4cm、∠BAP=∠CAP=60°であるとする。 このとき、線分APの長さを求めよ。ただしAPは円の直径ではない。 教えて下さい 意地悪問題になってるかなのですが、ABを直径とする円周上をPがうごきます。普通は角ABPが0度でないは、PがAとBと一致しないことです。角ABPが0度、でないの場合、は角ABPが0度なのは、PがAと一致するときなので、それを否定しているので意地悪問題では、PがAと一致しないになるのでしょうか。それとも完全に間違っていて、角ABPが0度でないを、0度でないでなく、丸ごと否定はできないのでしょうか。また意地悪問題が成立しているなら、aが0、でないはaが値を持たない場合やaがbである場合もありえるのでしょうか。 中学生の数学の問題です(図形) 中学生の数学の問題です 三角形ABCがあり、角BAC=45度 角ABC=70度である。点Pは辺BC上を動く。点Pを辺AB、辺ACについて対象移動した点をそれぞれQ、Rとする。三角形AQRの面積が最小になるときの角BAPの大きさを求めよ。 どう考えればよいでしょうか? 教えて下さい ABを直径とする円周上を動点Pがうごきます。場合分けをする場合、角ABP=0度のときと角ABPが0度でないときでいいでしょうか。それとも角ABP=0度のときと角ABPが0度でないときと角BAP=0度のときでしょうか。角ABPが0度でないときとは0度より大きく90度より小さいと意味しますか。それとも0度より大きいときと角ABPが定義できないときをいうのでしょうか。角ABPが0度、でない、と角ABPが0度でない、は別でしょうか。 内分 座標平面上に点A(5,10),B(40,-20),P(a,b),O(0,0)がある。Pは線分AB上の点で,線分OPは角AOBを二等分する。このときa,bを求めよ。 基礎的な問題ですが内分,外分がとても苦手で分かりません。ヒントや内分,外分のやり方を教えてもらいたいです。 数学Aの証明問題です。 AB=ACである二等辺三角形ABCの辺BC上に点P,辺BCの延長上に点Qをとると、AP<AB<AQであることを証明せよ。ただし、P,Qは三角形の頂点と一致しないものとする。 という問題なのですが、 △ABPにおいて 角ABP=角CAP+角ACP 角B=角C よって 角APB>角B ゆえに AB>AP △APQにおいて 角Q=角BCA-角CAQ 角B>角Q と、ここまで解いてみましたが、少し混乱してます。解き方お願いします。(角の記号の出し方がわからないんで漢字です。) 線分の外分 線分AB(長さは8)を3:1に外分する点Pを図に記入せよ。 解答 線分ABを3:1に外分する点Pは、線分ABをBの方向に延長した線上にあり AP:PB=3:1 このとき、AB=8とすると BP=8×1/3-1=4 質問 「BP=8×1/3-1」をどのようにして導いているのか分かりません(特に「3-1」は何を表わしているのかが分からない。)ので詳しく教えてください。 円すいの展開図おうぎ形における最短距離について 何度考えても 回答と一緒の答えがだせません。 すみませんが、解き方を教えてください。 底面の半径2cm、母線ABの長さ6cmの円すいにおいて、点Pは母線ABの中点、2点B、Cは底面の直径の両端とする。このとき、次の問いに答えなさい。 (問)側面にそって、2点P、Cを結ぶ最も短い長さを求めよ。 (答)3√7cm (解説)円すいの展開図は、中心角120°、半径6cmのおうぎ形である。 線分PC=√(3+3)^2+(3√3)^2=√63=3√7 線分PCの位置関係と解説の式の数字はどこからだしたものかというのがわかりません。 どうか よろしくお願いします。 平面ベクトル 98[C] (2)だけ解いてください 三角形OABにおいて、OA=1,OB=AB=2とし、↑OA=↑a,↑OB=↑bとおく。このとき、次の問いに答えよ。 (1)内積↑a・↑bを求めよ。 解 1/2 (2)角AOBの二等分線上に点PがAP=BPを満たすとき、線分APの長さを求めよ。 数学の問題を教えてください! 受験生ですが、以下の問題が解けなくて困っています。 どなたか解説付きで教えてください。 AC:BC=5:4のとき、線分AB上にAP:BP=5:4となるPを作図せよ。 答えは∠ACBの角の二等分線とABの交点がPとなる、だそうなのですが、何故そうなるのかが分かりません。 よろしくお願いします。 相加平均、相乗平均を使う問題。。 両端が放物線y=x^2の上にある線分ABの中点をPとする。 点A、Bのx座標をそれぞれ、a,bとし、Pの座標を(p,q)とする。 (1)~(3)は問題のみ書きます。 (1)pおよびqを、aとbを用いて表せ。 (2)積abを、pとqを用いて表せ。 (3)線分ABの長さが4であるときqをpの式で表せ (4)線分ABが長さを4に保って動くとき、qの最小値と、そのときのpの値を求めよ。 という相加平均・相乗平均の関係を使って答えを出す 問題なんですが、どうして、この関係を使って解くか いまいちわかりません。教えてください!! (4)のことです。 ちなみに答えは、 p^2+1/4>0であるから、相加・相乗平均の関係を用いて、 q=1/(p^2+1/4) +p^2+1/4-1/4 ≧2-1/4 =7/4 等号成立は、p^2+1/4=1つまりp=±√3/2のときである。 したがって、qの最小値は 7/4(p=±√3/2のとき) です。よろしくお願いします。 傾きの問題なんですが、、、 「2点 A(4,0)B(0,2)があり、線分AB上に角OPB=角QPAとなる。 OPの傾きをmとしてQのx座標をmで表しなさい」 って問題を直線ABに関する点Q(q,0)の対称点をQ’(a,ma)として、ABが線分QQ'の垂直二等分線を用いて答えることってできますか? お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など