• ベストアンサー

対数関数の問題について

画像の(1)と(2)の問題の解き方がどうしてもわからないので、どなたか教えてくださいおねがいします

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8627/18453)
回答No.1

(1) 対数の底は省略する。 2log(3^(1/3))+2log(9)-log(9^(1/3))-(1/6)log(9) =2log(3^(1/3))+2log(3^2)-log(3^(2/3))-(1/6)log(3^2) =(2/3)log(3)+4log(3)-(2/3)log(3)-(1/3)log(3) =2/3+4-2/3-1/3 =11/3 (2) 対数の底を2に統一すると log[4](25)=log[2](25)/log[2](4)=(2log[2](5))/(2log[2](2))=log[2](5) log[5](4)=log[2](4)/log[2](5)=(2log[2](2))/log[2](5)=2/log[2](5) log[25](2)=log[2](2)/log[2](25)=1/(2log[2](5)) だから (log[2](5)+log[4](25))(log[5](4)-log[25](2)) =(log[2](5)+log[2](5))(2/log[2](5)-1/(2log[2](5))) =2log[2](5)*3/(2log[2](5)) =3

関連するQ&A