• ベストアンサー

coskθ、sinkθの周期について

非常に素朴な質問です。 cosθ、sinθは単位円1周で1周期になる筈なので、周期は2πであるというのは理解出来ます。 しかし、coskθとsinkθの場合になぜ周期が2π/kとなるのか高校の教科書を読んでも何かしっくりきません。 数研の教科書では次の様に表現しています。「θ=α/2のときのsin2θの値とθ=αのときのsinθの値は一致するから、y=sin2θのグラフはy=sinθのグラフをy軸をもとにして、θ軸方向に1/2縮小したものである。」 何か良い理解の仕方は無いものでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
noname#199771
noname#199771
回答No.5

#3です。 いただいた補足について。 >(2)は初耳です。 任意のxについてf(x+T)=f(x)となるような 最小のT>0を周期という、というところから 出発して(1)と(2)に分解しているだけです。 もしTより小さいt(0<t<T)が存在して任意の 実数xに対してf(x+t)=f(x)となってしまうと、 Tの最小性に反してしまいます。 (2)はその否定であって、Tより小さい正数 でTと同じ性質をもつものはないと言って います。 たとえば仮に6π=Sとすると t=4πとおけば0<t<Sでありしかも 任意の実数xについてcos(x+t)=cos(x) が成り立ってしまい(2)を満たさないので Sは周期にはなりません。 >(2)について検証してみたのですが >cos(π/6)=√3/2であり、cos(11π/6)=√3/2 >と同じになる。 >ここで、f(x)=cosx、x=π/6、t=10π/6(<2π) >とすると、 >f(x+t)=f(x)となってしまいます。 >どこかおかしいでしょうか。 x=0として cos(0)=1 cos(0+t)=cos(10π/6)=1/2 となって一致しません(1≠1/2)。 (2)はtを固定したときにそういうxが一つでも あればいいのです。 どんな実数xをとってきても f(x+(10π/6))=f(x) が成り立つのなら2πが周期ではなかった ということになってしまいますがそうなって いません。x=π/6のときにたまたま等しく なっただけです。実際x=0のときは等しく なりません。

kenzou03
質問者

お礼

>もしTより小さいt(0<t<T)が存在して任意の >実数xに対してf(x+t)=f(x)となってしまうと、 >Tの最小性に反してしまいます。 この考え方良くわかりました。 また、自分の検証はどんな実数を持ってきてもにはなっていませんでした。 非常に素晴らしい回答でした。

その他の回答 (5)

回答No.6

角速度を意識するといいかもしれません。自分は時間的変化をイメージ出来るようになってから、理解したので。 角速度については以下urlを参考に。 http://www.wakariyasui.sakura.ne.jp/b2/53/5311en.html 1. w=2pi/T。周期Tの関数が時間t[s]をかけてどこまで進んでいるかは以下。 θ=wt 2. 三角関数を書き換え。 sin(kθ)=sin(kwt)=sin(k2pi/Tt)=sin(2pi/{T/k}t) 周期に着目すれば、周期Tが1/k倍されていると考えることができます。周期が短くなれば、より短い時間で一周することになります。

kenzou03
質問者

お礼

納得です。確かに周期が1/kされています。 動きを用いて考えると余計に理解が深まります。

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.4

k,シータ に具体的な数値を入れて値を計算し、 表を作ってそれをグラフに描いてみる。 手で作業をすれば、納得できます。 面倒ですけどね。

kenzou03
質問者

お礼

実践してみました。 確かにその通りになります。 色々と理屈を捏ねるよりも実践がつかみやすいかも知れません。

noname#199771
noname#199771
回答No.3

周期の定義があいまいだから何となく もやもやした状態から抜け出せないので はないでしょうか? 実変数の関数fの周期がT(>0)とは、 (1)任意の実数xに対してf(x+T)=f(x) (2)0<t<Tなる任意のtについて   ある実数xが存在してf(x+t)≠f(x) が同時に成り立つことです。 さて、f(θ)=sinkθ、T=2π/kと置いて みましょう。 ■(1)の検証 任意の実数θに対して f(θ+T) =sinkf(θ+(2π/k)) =sin(kθ+2π) =sinkθ =f(θ) です。 ■(2)の検証 もしある実数tが存在して 0<t<Tかつ任意の実数θに対して f(θ+t)=f(θ) と仮定します。すると、 sinkθ =f(θ) =f(θ+t) =sink(θ+t) =sin(kθ+kt) xの関数sinxの周期が2πなので (x=kθとみる)ある整数nが存在して kt=2πnとなります。 0<t<Tでしたから、 0<2πn/k<T(=2π/k) ∴0<n<1 となり、nが整数であることに矛盾。 coskθについても同様。

kenzou03
質問者

補足

有難うございます。非常に基本に忠実な回答です。 実変数の関数fの周期がT(>0)とは、 (1)任意の実数xに対してf(x+T)=f(x) (2)0<t<Tなる任意のtについて   ある実数xが存在してf(x+t)≠f(x) が同時に成り立つこと。 ところで、回答頂いた(1)は理解出来ましたが、 (2)は初耳です。何か出典やリンク先あれば教えて下さい。 また、(2)について検証してみたのですが、おかしなところがあれば指摘して下さい。 cos(π/6)=√3/2であり、cos(11π/6)=√3/2と同じになる。 ここで、f(x)=cosx、x=π/6、t=10π/6(<2π)とすると、 f(x+t)=f(x)となってしまいます。 どこかおかしいでしょうか。

  • trytobe
  • ベストアンサー率36% (3457/9591)
回答No.2

cos(kθ) や sin(kθ) の kθ = α とでも置いて、cosα や sinα として考えたほうがいいかもしれません。 cosα や sinα が1周期するには、αが0から2πまで変化して、やっと1周期なわけです。 ということは、α = kθ が 0から2πまで変化して1周期ですから、α=0 のときの θ=0 から、α=2π のときの θ=2π/k までで1周期になる、わけです。

kenzou03
質問者

お礼

確かにしっくりと来ます。 sinθはθが2πで単位円を一周します。これが5θであれば、2πなら5周したことになりますね。

  • bgm38489
  • ベストアンサー率29% (633/2168)
回答No.1

θの変化に対する周期、ととらえればどうでしょうか?cosθの周期は、2π。これは、θの変化が2πごとの周期ということ。kθだと、θが2π/k変化すれば、2π変化することになる。 説明は教科書に習うべきだが、理解はこの方が速いのでは。

関連するQ&A