- 締切済み
数学
問7 次の関数のグラフをかけ (1)y=2分の一sinθ (2)y=2cosθ 問8次の関数のグラフをかけ。また、周期を求めよ (1)y=cos2θ (2)y=sin2分のθ 問9次の関数のグラフをかけ (1)y=sin(θ-60度) (2)y=cos(θ+30度) 問10次の式をrsin(θ+α)の形に変形せよ (1)3sinθ-√3cosθ (2)-sinθ+cosθ 問11弧度法で表された次の角は、それぞれ何度か 3π
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- muturajcp
- ベストアンサー率78% (508/650)
7 (1) f(θ)=(sinθ)/2 f'(θ)=(cosθ)/2 f((4n-1)π/2)=-1/2 (4n-1)π/2<θ<(4n+1)π/2のとき増加 f((4n+1)π/2)=1/2 (4n+1)π/2<θ<(4n+3)π/2のとき減少 (2) f(θ)=2cosθ f'(θ)=-2sinθ f(2nπ)=2 2nπ<θ<(2n+1)πのとき減少 f((2n+1)π)=-2 (2n+1)π<θ<2(n+1)πのとき増加 8 (1) 周期はπ f(θ)=cos(2θ) f'(θ)=-2sin(2θ) f(nπ)=1 nπ<θ<(2n+1)π/2のとき減少 f((2n+1)π/2)=-1 (2n+1)π/2<θ<(n+1)πのとき増加 (2) 周期は4π f(θ)=sin(θ/2) f'(θ)={cos(θ/2)}/2 f((4n-1)π)=-1 (4n-1)π<θ<(4n+1)πのとき増加 f((4n+1)π)=1 (4n+1)π<θ<(4n+3)πのとき減少 9 (1) f(θ)=sin{θ-(π/3)} f'(θ)=cos{θ-(π/3)} f((12n-1)π/6)=-1 (12n-1)π/6<θ<(12n+5)π/6のとき増加 f((12n+5)π/6)=1 (12n+5)π/6<θ<(12n+11)π/6のとき減少 (2) f(θ)=cos{θ+(π/6)} f'(θ)=-sin{θ+(π/6)} f((12n-1)π/6)=1 (12n-1)π/6<θ<(12n+5)π/6のとき減少 f((12n+5)π/6)=-1 (12n+5)π/6<θ<(12n+11)π/6のとき増加 10 (1) (2√3)sin(θ+(-π/6)) (2) (√2)sin(θ+(3π/4)) 11 540°
数学IIの教科書の三角関数の章を熟読しましょう。