- 締切済み
空間ベクトルの問題がよくわかりません。
空間ベクトルの問題です。解答を見てもよくわかりませんでした。どなたか解説をお願いします。 点Oを原点とするxyz空間内の四面体OAPQにおいて、↑OA=(2,0,0)、↑OP=(0,p,0)、↑OQ=(0,0,q)であり、p>0、q>0とする。 ∠PAQ=30°とするとき(1)、(2)の問題に答えなさい。 (1) △APQの面積を求めよ。また|↑OP|のとりうる範囲を求めよ。 (2) 四面体OAPQの体積をVとするとき、Vの最大値を求めよ。 解答 (1) ↑AP=(-2,p,0)、↑AQ=(-2,0,q)だから、 |↑AP|=√(4+p^2)、|↑AQ|=√(4+q^2) また△APQの面積=1/2 × |↑AP||↑AQ|sin30° =1/4 √(4+p^2) √(4+q^2)・・・(1) 一方↑AP・↑AQ=(-2)・(-2)+p・0+0・q =4 より ↑AP・↑AQ=|↑AP||↑AQ|cos30° =√3/2 √(4+p^2) √(4+q^2)=4 よって √(4+p^2) √(4+q^2)=8√3/3 ・・・(2) (1)(2)より、△APQ=2√3/3 また、(2)は(4+p^2)(4+q^2)=64/3 ・・・・(3) p>0、q>0より、4+p^2>4だから、4+p^2<16/3 p^2<4/3より、0<p<2/√3=2√3/3 と書いてありました。(1)の式までは理解しましたが、一方から何を目的に変形したのかがよくわかりませんでした。解説をよろしくお願いします。 (2) 解答 △OPQを底面とすると、V=1/3 △OPQ・|↑OA|=1/3 ・ 1/2 pq ・2=1/3 pq (3)より、p^2q^2+4(p^2+q^2)=16/3 ここで相加平均と相乗平均の関係より、 p^2+q^2≧2√p^2q^2=2pq (等号成立はp^2=q^2のとき)であるから p^2q^2+4・2pq≦16/3 (pq+4)^2≦64/3 4<pq+4≦8√3/3 0<pq≦8√3-12/3 よってp^2=q^2=8√3-12/3 のとき、Vは最大値1/3 ・8√3-12/3=8√3-12/9をとる と書いてありました。(3)よりからよくわかりません。なぜ相加相乗平均を使うのかがよくわかりません。また、平方を作ったりしていますがどういう意図で解答するのか教えてください。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- info222_
- ベストアンサー率61% (1053/1707)
(設問1) 先ず、解答ミスの訂正。 >4+p^2)(4+q^2)=64/3 ・・・・(3) >p>0、q>0より、4+p^2>4だから、4+p^2<16/3 >p^2<4/3より、0<p<2/√3=2√3/3 2行目の「4+p^2>4」 誤:4+p^2>4 正:4+q^2>4 >(1)の式までは理解しましたが、一方から何を目的に変形したのかがよくわかりませんでした。解説をよろしくお願いします。 ∠PAQ=30°の条件を p,qの条件式にしたのが 式(2) ⇒ 式(3) (4+p^2)(4+q^2)=64/3 ・・・・(3) です。 求めるのが |↑OP|= p の取りうる範囲だから、 式(3)にq>0の条件、すなわち 4+q^2>4 なる条件を適用して、 pについての条件式を求める。 ⇒ 4<(4+p^2)=64/3 このp (>0)の条件式からpの取りうる範囲を求めれば良い。 ⇒ 0<p<2√3/3 (答) ということになります。 お分かり? (設問2) >(3)よりからよくわかりません。 まず、(設問1)の式(3)までを良く理解してください。 >なぜ相加相乗平均を使うのかがよくわかりません。 必ずしも相加相乗平均の関係を使う必要はありません。 (4+p^2)(4+q^2)=64/3 (p>0,q>0) ・・・・(3) の条件の下で V=pq/3 …(4) の最大値を求める設問です。 解答では、たまたま、相加相乗平均の関係を使ったに過ぎません。 添付図に(3)式のグラフ(黒実線)と(4)式のグラフ(青実線)を描いてグラフ的に解いてみました。(3)式のグラフが(4)式のグラフが交点をもつような pq=3Vの範囲から Vの範囲が0<V=pq/3≦(8√3-12)/9と求まります。Vが最大となるのが P点の(p,q)=(2√((2√3-3)/3), 2√((2√3-3)/3))のときです。 他の解法でもできると思いますからやってみてください。 同じ結果が得られるでしょう。
補足
訂正ありがとうございます。大変失礼しました。 追加になってしまいますがよろしくお願いします。 式(3)にq>0の条件、すなわち 4+q^2>4 なる条件を適用して、 pについての条件式を求める。 ⇒ 4<(4+p^2)=64/3 このp (>0)の条件式からpの取りうる範囲を求めれば良い。 ⇒ 0<p<2√3/3 (答) ということになります。 と書いてあるのですが、q>0の条件からなぜに 4+q^2>4 になる条件なのでしょうか? p>0の条件の 4+p^2>4 でもいいのでしょうか。 また、4<(4+p^2)=64/3の条件(pの条件)がよくわかりません。64/3はなぜに出てくるのでしょうか?