• 締切済み

ベクトルです

三角形OABにおいて辺AB上の点P(P≠A、P≠B)から 直線OA,OBにおろした垂線をそれぞれPQ,PRとするとき 直線OPが直線QRに垂直である。→a=→OA,→ b=→OB、→p=→OPとする。 (1)→OQをs・→a、→QR=u・→a+v・→bの形で表せ (2)→p・→a>0が成り立つことを示せ 質問したいのは(2)なのですが、 (2)∠AOP>90°の時 OA⊥PQ,OB⊥PRであるから、四点O,P,Q,RはOPを直径とする円上にあり、QとRはOPに関して同じ側にある。このとき、条件OP⊥QRを満たさないから適さない。したがって ∠AOP<90°の時、→a・→pのなす角は鋭角である。したがって→p・→a>0 とあるのですが(2)のはじめからわかりません。四点O,P,Q,RはOPを直径とする円上にありOPが直径だからそもそも∠AOP>90°自体成り立たないと思うのですが、、 どうなのでしょうか? よろしくお願いします

みんなの回答

  • kyotowim
  • ベストアンサー率18% (2/11)
回答No.1

あなたのおっしゃるとおりだと思います。 変な問題ですね・・。1)と2)のつながりもないし。

関連するQ&A