ベストアンサー n(n+1)(2n+1)/6の変形 2012/12/28 14:17 いつも大変お世話になります。 さて、標題に関し、どおしてn(n+1)(2n+1)/6が、6/1(1+1/n)(2+1/n)になるのでしょうか? 計算方法など、こと細かく、ご指導願います。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2012/12/28 14:38 回答No.1 そこだけ抜き出されても, 見ている人間にはなんのことやらさっぱりわからない. 質問者 お礼 2012/12/28 15:07 すみません。 1/6(1+1/n)(2+1/n)に訂正願います。 6/1(1+1/n)(2+1/n)になると微分積分の本に書いてあったのですが、・・・ 質問者 補足 2012/12/28 15:13 すみません。 1/6(1+1/n)(2+1/n)に訂正願います。 1/6(1+1/n)(2+1/n)になると微分積分の本に書いてあったのですが、・・・ 上記お礼コメントを訂正願います。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) info22_ ベストアンサー率67% (2650/3922) 2012/12/28 14:41 回答No.2 なりません。 ならないので、計算方法の指導は不可能です。 何かの問題の一部での変形なら、問題全体を補足にお書きください。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A n(n+1)(2n+1)/6の変形 いつも大変お世話になります。 さて、標題に関し、どおしてn(n+1)(2n+1)/6が、1/6(1+1/n)(2+1/n)になるのでしょうか? 計算方法など、こと細かく、ご指導願います。 微分積分の本に載っていたのですが・・・・ 1+1/(2*2)+…+1/(n*n) 自然数nに対して 1+1/(2*2)+…+1/(n*n)の値の計算方法を教えてください。 lim(n→∞) Σ(k=1,n) n*(5/6)^n lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム n^n +1が3で割り切れるもの 「(1)正の整数nでn^3 +1 が3で割り切れるものをすべて求めよ (2)正の整数nでn^n +1 が3で割り切れるものをすべて求めよ」 (1)なのですが、n=3k、n=3k+1、n=3k-1のときに分けて計算したところn=3k-1すなわちnが3で割って2余るときが適することがわかりました。しかし「すべて」求めるという問題文からするとダメなのかな?と思ったのですがどうなのでしょうか? (2)なのですが、(1)と同じようにできそうかなと思ったのですがなかなかうまくいきませんでした。(1)を利用するということはできるのでしょうか? 回答いただければ幸いです。よろしくお願いします n(n-1)-5=1? お世話になってます。数学なんですが・・・よくわからないので質問させてください。 p=n^2(n-1)^2-25は・・・(pは素数) {n(n-1)+5}{n(n-1)-5}で n(n-1)+5=n^2-n+5=(n-1/2)^2+19/4になるみたいなんですが、 なぜ最後に19/4になるのかがわかりません。 スラッシュは、割るという意味ではなく分数を表しています。 数学に詳しい方ぜひ教えてください。 ( n(n+1)(2n+1) )/6 の証明について 1^2 + 2^2 + ... + n^2 = ( n(n+1)(2n+1) )/6 の証明についてです 3(1^2 + 2^2 + ... + n^2) =(n+1)^3 -1 -(3n(n+1))/2 -n =(n+1)^3 - (3n/2)(n+1) - (n+1) <<このあたりの計算は中略>> =(n+1)((1/2)n(2n+1)) ∴ ( (n+1)((1/2)n(2n+1)) )/3 =( n(n+1)(2n+1) )/6 よって 1^2 + 2^2 + ... + n^2 =( n(n+1)(2n+1) )/6 こんな出だしの証明になっているのですがどうでしょうか? いきなり全体に3をかけて 3(1^2 + 2^2 + ... + n^2) という出だしになっていますが、これでもOKでしょうか? どうぞアドバイスよろしくお願いいたします。 Γ(n+1/2)≒n!/√nの証明 Γ(n+1/2)≒n!/√nを証明する前にΓ(n+1/2)=(2n)!√π/((4^n)・(n!))を証明しました。これとスターリンの公式を使用してΓ(n+1/2)≒n!/√nを導けという問題が出題されたのですが解けなくて困っています。 どなたかわかる方ご指導お願いします。 (n^2+2n) * {(3n^2+n)/2}=? (n^2+2n) * {(3n^2+n)/2}と言う計算なのですが、 左側の項は分母を/2にして、右側と合わせるのですか? こういう場合のやり方を忘れてしまって… 6分の1n(n+1)(2n+1)-2n(n+1) 6分の1n(n+1)(2n+1)-2n(n+1)が何故6分の1n(n+1){(2n+1)-12}になるのかが分かりません。回答お願いします! f(n)=(1)^n+(2)^n+(3)^n+(4)^n nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。 1/2*3(n+1)(n+2)-2(n+2)-2(n+1)/2(n+1)(n+2)=??? (1)1/2*{3(n+1)(n+2)-2(n+2)-2(n+1)}/2(n+1)(n+2)= (2)(3n^2+5n)/4(n+1)(n+2) なのだそうですが… 自分で紙に書いて計算しても(2)になりません。 (2)になるまでを詳しく書いてください。 3(n+1)(n+2)-2(n+1)(n+2)として計算したのですが… Σ_{n=0}^∞B_n(x)u^n/n!の変形が 識者の皆様よろしくお願い致します。 B_nはz/(e^z-1)=Σ_{n=0}^∞B_n z^n/n! (但し,|z|<2π)を満たす数でBernoulli数といいます。 そして,B_n(x)はBernoulliの多項式です。 その時,Σ_{n=0}^∞B_n(x)u^n/n!=ue^{ux}/(e^u-1)が成立つらしいのですが どうすれは変形できるのか分かりません。どうぞご教示くださいませ。 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 となりますが、これを図形を用いて証明することはできないのでしょうか? どなたかよいアイディアがあれば教えてください。 Σ[n=0..∞](-1)^n5^n/(2n)!の和は? Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか? (1+1/n)^nを実際にいろいろなnについて計算し、n→∞での極限値 (1+1/n)^nを実際にいろいろなnについて計算し、n→∞での極限値と比較してみよ。 という問題なのですが、実際にnにいろいろな数字をいれるとnがだんだん大きくなるにつれてeに近づきました。 またlim(1+1/n)^n=eになります。 なので (1+1/n)^nを実際にいろいろなnについて計算すると、nが増えていくほど、eに近づき、すなわち、n→∞の極限値に近づいていくが、一致することはない。 で、答えになりますか、でも、「一致することはない。」が完全にいえないので少し悩んでいます。 教えてください。 数列 1/(n+1)+1/(n+2)…1/(n+n) の収束について ----------------------- 数列{an}を an=1/(n+1)+1/(n+2)…1/(n+n) とする。ただしn∈Nとする。 (1)この数列は収束する。 (2)n→∞のとき、0≦an≦1となる。 ----------------------- を示したいのですが、どのように導けばよいのかさっぱり解りません。 (1)で、この数列が収束することは単調増加することと下に有界であることから示せました。 (2)は解けずにいるのですが、疑問点があります。 n=1のときに、a1=1/2となり、数列が単調増加をすることから、0≦anということは有り得ないのでは?と思うのですが…。 このことと、大雑把な道筋を教えてください。 細かい計算は自力でやりたいので…。 {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 n → ∞のとき、 {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 また、n → ∞のとき、 {√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8 らしいのですが、証明がかいてありませんでした。 どうか証明を教えていただけないでしょうか。 極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は? (1)lim[n→∞](3^n/(2^n+n^2)) (2)lim[n→∞](2^n+3^n)^(1/n) の極限値がわかりません。 (1)は3^nで分母・分子を割って lim[n→∞](3^n/(2^n+n^2)) = lim[n→∞][1/{(2/3)^n+n^2/3^n}] までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。 どうなるのでしょうか? あと、(2)は対数を取って lim[n→∞]log(2^n+3^n)^(1/n) = lim[n→∞](1/n)log(2^n+3^n) までいけたのですがここから先へ進めません。 lim{n→∞}(n√n) n√n=(1+λn) (λn>0)(λnはλ*nと言う意味ではありません) が成り立つとき、lim{n→∞}(n√n)が1に収束することを示せ。 と言う問題なんですが、かなり考えたんですが、無理でした。 ヒントには、はさみうちの原理を使えと書いてありますが、どうにもはさめません 1<1+λn は言えますが、「1+λn<」の後になんて書けば良いのかさっぱりです。 ちなみに、ヒントとは思えないんですが、もう1つヒントがあって、それは n√n=(1+λn) ⇔ n=(1+λn)^n です。 事情あってできれば、早くといてほしいです。 どうかお願いします。 Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか? Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
すみません。 1/6(1+1/n)(2+1/n)に訂正願います。 6/1(1+1/n)(2+1/n)になると微分積分の本に書いてあったのですが、・・・
補足
すみません。 1/6(1+1/n)(2+1/n)に訂正願います。 1/6(1+1/n)(2+1/n)になると微分積分の本に書いてあったのですが、・・・ 上記お礼コメントを訂正願います。