締切済み (n^2+2n) * {(3n^2+n)/2}=? 2010/03/08 15:54 (n^2+2n) * {(3n^2+n)/2}と言う計算なのですが、 左側の項は分母を/2にして、右側と合わせるのですか? こういう場合のやり方を忘れてしまって… みんなの回答 (3) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2010/03/08 18:58 回答No.3 そのままで十分簡単な式で、 整理する余地が、あまりありません。 * と / の、どちらからやっても同じなので、 単に { } をはずして、 = (n~2+2n)(3n~2+n)/2. 何か整理するとすれば、 因数分解して、 = (n~2)(n+2)(3n+1)/2. くらいのものでしょうか。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2010/03/08 16:49 回答No.2 単に括弧を付け替え、分母の2を全体の分母と考えればいいですね。 全体の分子=(n^2+2n)*(3n^2+n) ← nを括弧の外に括りだす。 全体の分母=2 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#112109 2010/03/08 16:39 回答No.1 普通に計算すればよろしい。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は? (1)lim[n→∞](3^n/(2^n+n^2)) (2)lim[n→∞](2^n+3^n)^(1/n) の極限値がわかりません。 (1)は3^nで分母・分子を割って lim[n→∞](3^n/(2^n+n^2)) = lim[n→∞][1/{(2/3)^n+n^2/3^n}] までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。 どうなるのでしょうか? あと、(2)は対数を取って lim[n→∞]log(2^n+3^n)^(1/n) = lim[n→∞](1/n)log(2^n+3^n) までいけたのですがここから先へ進めません。 n^2-(n-1) =n^2-n+1なぜイコール? n^2-(n-1) =n^2-n+1なぜイコールなのでしょうか 左側の式と 右側の式の計算順序がわかりません。 よろしくお願いします。 Σ[n=0..∞](-1)^n5^n/(2n)!の和は? Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム An={1+(1/n)}^n (n=1,2,3,…)について…(続く) 【問題】An={1+(1/n)}^n (n=1,2,3,…)につい数列{An}は単調増加であることを示せ。すなわちAn<A(n+1)を示せ。またAn<3であることも示せ。 (※ただし,二項定理を利用せよ。) よろしくお願いします。 二項定理にあてはめてみたのですが…そっからさっぱりです^^; a[1]=3,4a[n+1]=12a[n]-2×{3^(n-1)}×n a[1]=3,4a[n+1]=12a[n]-2×{3^(n-1)}×n+3^(n-1) で、 Σa[k](k=1~n)を最大にするnの最小を求めよ。 まず、一般項a[n]=-3^(n-2){n^2-2n-3)/4 を求めました。 このあとΣの値を求められません。 よろしくお願いします。 Σの計算 Σ(K=1,n)1/(k(k+2) =1/2Σ(k=1,n)(1/k - 1/k+2) =1/2((1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+…+(1/n-1 - 1/n+1)+(1/n - 1/n+2) で計算すると最後の分母が大きい2項が残るそうですがそれについて把握ができません。 もし Σ(K=1,n)1/(k(k+3)という問題でしたら計算をすると最後の分母が大きい3項が残るのでしょうか? {9^(n+1)-8n-9}/64になる証明 {9^(n+1)-8n-9} (n=正の整数) という数字が64で割れることを二項定理を使って証明したいのですが、分かりません。 自分でやってみたところ、 (1+8)^n=…… ↓ 9^n-8n-1=64k ↓ 9^(n+1)-8n*9-9=64k*9 というところまで、できましたが次何すればいいのかわかりません。 回答お願いします。 lim(n→∞) Σ(k=1,n) n*(5/6)^n lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。 1+1/(2*2)+…+1/(n*n) 自然数nに対して 1+1/(2*2)+…+1/(n*n)の値の計算方法を教えてください。 n^n +1が3で割り切れるもの 「(1)正の整数nでn^3 +1 が3で割り切れるものをすべて求めよ (2)正の整数nでn^n +1 が3で割り切れるものをすべて求めよ」 (1)なのですが、n=3k、n=3k+1、n=3k-1のときに分けて計算したところn=3k-1すなわちnが3で割って2余るときが適することがわかりました。しかし「すべて」求めるという問題文からするとダメなのかな?と思ったのですがどうなのでしょうか? (2)なのですが、(1)と同じようにできそうかなと思ったのですがなかなかうまくいきませんでした。(1)を利用するということはできるのでしょうか? 回答いただければ幸いです。よろしくお願いします ( n(n+1)(2n+1) )/6 の証明について 1^2 + 2^2 + ... + n^2 = ( n(n+1)(2n+1) )/6 の証明についてです 3(1^2 + 2^2 + ... + n^2) =(n+1)^3 -1 -(3n(n+1))/2 -n =(n+1)^3 - (3n/2)(n+1) - (n+1) <<このあたりの計算は中略>> =(n+1)((1/2)n(2n+1)) ∴ ( (n+1)((1/2)n(2n+1)) )/3 =( n(n+1)(2n+1) )/6 よって 1^2 + 2^2 + ... + n^2 =( n(n+1)(2n+1) )/6 こんな出だしの証明になっているのですがどうでしょうか? いきなり全体に3をかけて 3(1^2 + 2^2 + ... + n^2) という出だしになっていますが、これでもOKでしょうか? どうぞアドバイスよろしくお願いいたします。 極限 an=n√n の求め方について lim (n→∞)an = A< +∞ならば、 lim (n→∞)(a1+a2+....+an)=Aa であるとき an = n√nの極限値を求めよ ( aに付いているnは数列の項の番号、√nについているnはn乗根の意味です) といった問題なのですが、どう手をつけていいかさっぱり解りません。 対数を使って計算する、と教わったのですが、どうやって対数をこの式に使えば良いのかわからないのです、どなたか解法や、解法のヒントをご存知の方がいましたら、回答お願いします、よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム (Σa_n・x^n)^m mを自然数として(Σ[n=0↑∞]a_n・x^n)^mが収束する場合にこれをべき級数で表した時のx^kの係数の計算の仕方がよくわかりません。a_nやxは実数とします。 Σ[n=0↑∞]Σ[n=n_1+n_2+…+n_m]a_n_1・a_n_2・…・a_n_m・x^nとして a_n_1・a_n_2・…・a_n_m=a_0^i_0・a_1^i_1・…・a_j^i_j・… と表すと有限個のjについてi_j>0でΣ[j=0↑∞]i_j=mであってnを固定するとこの係数をもつ項がm!/(i_1!・i_2!・…・i_n!)個あると考えればいいのかと思ったのですがこの推論は間違っているようです。 別のやり方としてx=0でのk次微分係数を計算してk!で割ればいいと思ったのですが具体的な計算ができませんでした。 6分の1n(n+1)(2n+1)-2n(n+1) 6分の1n(n+1)(2n+1)-2n(n+1)が何故6分の1n(n+1){(2n+1)-12}になるのかが分かりません。回答お願いします! n(n+1)(2n+1)/6の変形 いつも大変お世話になります。 さて、標題に関し、どおしてn(n+1)(2n+1)/6が、6/1(1+1/n)(2+1/n)になるのでしょうか? 計算方法など、こと細かく、ご指導願います。 1/2*3(n+1)(n+2)-2(n+2)-2(n+1)/2(n+1)(n+2)=??? (1)1/2*{3(n+1)(n+2)-2(n+2)-2(n+1)}/2(n+1)(n+2)= (2)(3n^2+5n)/4(n+1)(n+2) なのだそうですが… 自分で紙に書いて計算しても(2)になりません。 (2)になるまでを詳しく書いてください。 3(n+1)(n+2)-2(n+1)(n+2)として計算したのですが… 数学B 数列 次の数列の和を求めよ。 (1)1/1*4 , 1/4*7 , 1/7*10 , ・・・ 1/(3n-2)(3n+1) このような場合は、各項の分数を分けて 1/3(1-1/3) + 1/3(1/4-1/7) + ・・・ + 1/3{1/(3n-2)-1/(3n+1)} を計算すれば 最初の項と最後の項以外は全部消えていって、答えがでます。 これは最初の式の分母が積の形だったからですよね? 分母に和や差の形がある場合の問題、たとえば 1/1 , 1/1+2 , 1/1+2+3 , 1/1+2+3+4 , ・・・ のような形の数列の場合 一般項は、そのまま書けば「1/1+2+3+4+・・・+n」ですが、これは分母が和の形になっているので積の形に変形する」 つまり、一般項=2/n(n+1) にする という考え方でいいのでしょうか? また、1/√1+√3 , 1/√3+√5 , ・・・ のような分母にルートの和の形があるときも、分母を積の形にするために有理化する、という考え方でいいのでしょうか? この類の問題をみると、どれも「分母が積の形になっている」のでそう思い、どの問題もこのやり方でできたのですが、「考え方」としてあっているのか心配です。 お願いします。 (1+h)^n≧1+nh+{n(n-1)/2}h^2 h>0のとき(1+h)^n≧1+nh+{n(n-1)/2}h^2 これを示すのに「右辺は二項定理で展開して昇べき順で並べたときの最初の3項」ってことでは証明になりませんか? 数学的帰納法でしょうか? あと、0<x<1のときlim[n→∞]nx^n=0 を先の不等式を用いて示せという問題がわかりません。 一見明らかにみえますけど。 Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか? Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか? n(n+1)(2n+1)/6の変形 いつも大変お世話になります。 さて、標題に関し、どおしてn(n+1)(2n+1)/6が、1/6(1+1/n)(2+1/n)になるのでしょうか? 計算方法など、こと細かく、ご指導願います。 微分積分の本に載っていたのですが・・・・ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など