締切済み 一次反応速度の積分方程式について 2007/07/09 17:02 一次反応速度の微分方程式はだいたいわかったのですが、積分方程式についてがよくわかりません。 お願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 noname#160321 2007/07/09 18:36 回答No.1 添付の資料をご覧下さい。 参考URL: http://s-mac-p92.sap.hokkyodai.ac.jp/info/ex3/text/HTML/phys-ex10.html 通報する ありがとう 0 カテゴリ 学問・教育自然科学化学 関連するQ&A なぜ微分方程式はほとんど積分なのに... なぜ微分方程式は積分で計算するのに微分というの?初めの形が微分だから?あと微分方程式があるのに、なぜ積分方程式はほとんど出てこないの? 微分方程式 積分方程式 について 微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。 微分方程式と積分 1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分方程式・・・ 「次の等式を満たす2次の整数f(x)を求めよ x∫f(t)dt (定積分の区間は下端1、上端x)=f(x)+3x^4-4x^3-9 」という問題の解説で「この問いの積分方程式において両辺をxで微分すると(左辺では積の微分公式を用いる) ∫f(t)dt (定積分の区間は下端1、上端x)+xf(x)=f'(x)+12x^3-12x^2となり・・」とあったのですがどうして「∫f(t)dt (定積分の区間は下端1、上端x)+xf(x) =f'(x)+12x^3-12x^2」となるのかわかりません・・ 教えてください!! 反応速度式の積分について テストがあるので勉強中です。 反応速度の積分はどのように行っているのかがわかりません。 教科書・参考書を見ましても -d[A]/dt=k[A]を積分してln[A]=-kt+c -d[A]/dt=k[A]^2を積分してkt=1/[A]-1/[A]0 など・・・・ 一体どういう計算を行ってるのでしょうか? この微分方程式は解けるのでしょうか 微分方程式 -dy/dx=Y^2 * X + 1 は解けるのでしょうか? とある物質の反応速度を実験的に調べ、導き出した微分方程式なのですが解き方が判りません。非常に困っております。私の脳みそではどんなに考えても結論が出ませんでした。誰か教えてください。 微分積分の使い方 数学のセンスがなくって申し訳ありません。 微分積分の使い方がよくわかりません。 工学を専攻し、材料力学や流体力学、音の解析とかにも微分積分を使います。 しかし、なんでそこで微分積分が使えるのかがよくわかりません。それでとりあえず解が得られるのは、わかりますが、文章の状態で問題が出された場合 「ああ、この問題あれを積分すれば解けるじゃん。」みたいな感じになりません。 ニュートンが訂した微分積分の成り立ちとか把握の仕方は、知っていますが速度、加速度、距離以外での微分積分の利用がよくわかりません。 微分積分を解くことは、練習問題、演習などでなんとなく機械的に解くことができます。しかし、高校で勉強した物理の方程式を微分積分を利用して解を得るというその考え方を作る方法がわかりません。 この質問を見た方の中で微分積分の利用方法がわかった瞬間や使い方がわかるような本を知っているようでしたら教えていただけますでしょうか。 宜しくお願い致します。 化学反応速度式について 可逆二分子反応A+B⇔C+D の 定容反応速度式の積分形を求めるときに Aの反応率xと初濃度がCa0,Cb0,Cc0,Cd0と定められているときの微分形は物質収支式から求めればいいのでしょうか? 自分が考えたものは dCa/dt=-kCaCb+k'CcCdで(kは正反応定数) 平衡定数Kを使うとk'=k/Kで書き換えて dCa/dt=-kCaCb+kCcCd/Kとしたんですが、 これだと反応率xを使わないんで自分としてはどうしても納得がいきません それともこのあとの積分区間で考えてやればよいのでしょうか? この微分式と積分区間について教えてください お願いします 微分方程式と積分について 以下の問題について、解と解き方を教えていただけないでしょうか。 1.連立微分方程式の一般解と特殊解 (D+2)x-2y=1 x+(D+5)y=2 2.微分方程式の一般解と特殊解 (D^2-2D+1)y=x 3.積分※cは括弧内の閉曲線であり正の向きを持つ ∫c dz/(2z^2+3z-2) ※(c:|z|=1) 積分を含んだ微分方程式が解けません(>_<) 解いていただきたい微分方程式は以下の式です。 4∫x dt = t^2 ・ x’-2t x x=x(t)で、積分範囲はtが0から∞、t=∞のときはx=0です。 よろしくお願いします。 積分因子について 知恵袋でも質問したのですが、回答がこなかったのでこちらで質問します。 答えられる範囲でいいんで回答お願いします。 微分方程式の積分因子による解放について (x + (x^2 + y^2)x^3)dx + ydy = 0という微分方程式の積分因子を用いた解法について教えてください。 積分因子については、exp((1/2)x^4)ともとまったのですが、その後の計算がよくわかりません。 積分因子をかけることによって、完全微分方程式となって解がはじめて得られるようになると思うので、 積分因子をかけました。 exp((1/2)x^4)(x+(x^2+y^2)x^3)dx+exp((1/2)x^4)ydy となったのですが、ここから分かりません。 詳しく回答教えていただけるとありがたいです。 それから、完全微分方程式という用語についてなのですが、この完全ってどういう意味なんでしょうか? 完全というのは、解が得られるという意味なのでしょうか? 最初の式ってのは、解が得られないのでしょうか? ですが、積分因子を用いることによって解が得られるのでしょうか? よく完全微分方程式は、du=pdx+qdyみたいな形で示されますが、よくこの式の意味するところがわかりません。 u(x,y)という二つの変数をもった関数があったとする。 その関数をxについて偏微分したものが、pを表しているのでしょうか? pはdu(x,y)/dxというのが省略されてpとかいているだけなのでしょうか? 多変数関数、偏微分についてもくわしく勉強したことがなく、いきなり微分方程式を独学で勉強しているので、謝った考えた方をしている可能性もあり、きちんと理解しておきたいので、よろしくお願いします。 できれば詳しく解説してくださるとありがたいです 速度と微分方程式 速度と微分方程式 1.最初、20m/sの早さで走っていた自動車が一定の加速度で速さを増し、4.0秒後には40m/sになった。 (1)加速度一定の条件を用いて、早さに関する微分方程式を書け。 (2)初期条件を書け。 (3) (1)の微分方程式を(2)の初期条件を元に解け。 (4)速さの時間に関する式を求めよ。 (5) (4)を基に微分方程式を書け。これを解いて、この間に進んだ距離を求めよ。 (1) a=dv/dt ∫dv=a∫dt v+c=at+c v=at+c (2) 初期条件 t=0のときv=20m/s (3) 初期条件より v=5t+20 (3)までの答えはこれでいいでしょうか? (4)と(5)がわからないのでどなたかよろしくお願いします。 マクスウェルの方程式について マクスウェルの方程式には微分形と積分形があるそうですが,電磁界についての教科書や参考にしている本には微分形についての記述しかなく,積分形がどんなものなのか載っていません. 微分形から積分形に変形したりなどできるようですが,その具体的な方法や解説が載ったサイトは無いでしょうか? 積分形について詳しい方や,関連するHPをご存じの方が居られれば教えてください. 大学の微分積分について こんにちは、大学数学についていくつか質問させていただきます。 私は現在大学で微分積分学の講義を受講しているのですが、テストで、この線形微分方程式を解け。とでたら、もちろん解けるのですが、それが何を意味するのかわからないまま、ただ解き方を覚えてるという状況になってしまっています。 微分するということは、どういうことなのか?微分方程式はどう組み立てるのか?などが、詳しく解説されている書籍などありましたら、教えてください。 あと、三重積分についてなのですが、 こちらは解き方すら理解できてません。 こちらについても、詳しい解説がされているものがあれば、教えてください。 長々と申し訳ありませんが、どうかよろしくお願いします。 数学Ⅲで微分方程式を教えていない日本の教育 なぜ高校の数学では微分積分を習うのに、微分積分を融合した微分方程式を教えていないの? 旋光度を使って反応速度定数を求めるために、なぜ積分型の式を使うのでしょ 旋光度を使って反応速度定数を求めるために、なぜ積分型の式を使うのでしょうか? とても悩んでいます。 よろしくお願いします。 微分積分について 微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。 運動方程式と積分 運動方程式を 空間で積分する または時間で積分する ということがよくわかりません。 そもそも積分するというのは どういう意味があるのでしょうか? どなたか教えて下さい。 定数係数でない2階微分方程式 (x + 1) y'' + x y' - y = 0 という方程式を以下の手順により解け (1) y = u exp(- x)がこの微分方程式の解になるためにyがみたすべき微分方程式を求めよ。 この(1)で(x + 1) u'' - (x + 2) u' = 0 という微分方程式が出てきます。 (2) 前問で求めた微分方程式を解け ということで (x + 1) u'' - (x + 2) u' = 0という微分方程式を解くのですが これの解き方がわかりません。 積分すればいいのかと思ったのですが 2項目の積分をどうしていいかわからずに結局解けませんでした。 どうやってとけばいいか教えてください。 積分が出来ません。 d^2y/dx^2=x/√{-x(x-a)}という微分方程式をy= の形まで積分して持っていきたいのですがやり方がさっぱりわかりません。どなたか教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など