• ベストアンサー

数学の質問です

5円が500万円までといち(10日に1割)で膨らむのにどれくらいかかるか と計算してみたんですけど、なかなかいい計算方法が見つからなくて・・・ 数列使ってこれくらいまでは思いついたんですけど全くわからないです 5 5000000 an+1=11/10an a1=5 ax=5000000 10x=日数 どなたか助けてください

質問者が選んだベストアンサー

  • ベストアンサー
  • Ishiwara
  • ベストアンサー率24% (462/1914)
回答No.3

「旬」(10日)という単位があると仮定しましょう。1旬で1.1倍になるわけです。 x旬で100万倍ですから 1.1^x=10^6 両辺の対数をとると xlog1.1=6 x=6/0.0414≒145 つまり、1450日です。

その他の回答 (2)

  • ferien
  • ベストアンサー率64% (697/1085)
回答No.2

5円が500万円までといち(10日に1割)で膨らむのにどれくらいかかるか と計算してみたんですけど、なかなかいい計算方法が見つからなくて・・・ 数列使ってこれくらいまでは思いついたんですけど全くわからないです 5 5000000 an+1=11/10an a1=5 ax=5000000 10x=日数 n×10日目に500万円を超えるとすると 初項5、公比11/10の等比数列、その和は、 5+5・(11/10)+5・(11/10)^2+……+5・(11/10)^(n-1) =5((11/10)^n-1)/(11/10-1) ={5・(11/10)^n-5}/(1/10) これより、 5×10^6<{5・(11/10)^n-5}/(1/10) 10^6×(1/10)<(11/10)^n-1 10^5+1<(11/10)^n 10^5<(11/10)^n 両辺の常用対数を取ると、5<n・log(11/10) よって、n>5/log(11/10) 実際に数値では出せないですが。

  • DJ-Potato
  • ベストアンサー率36% (692/1917)
回答No.1

日数を10x日とすると 5×(11/10)^x = 5×10^6 log{5*(11/10)^x} = log{5*10^6} log5 + log{(11/10)^x} = log5 + log10^6 x*log(11/10) = 6 x = 6/log(11/10) ≒144.95 1440日で4565797.722円 1450日で5022377.495円になります。 小数点以下の丸め方でちょっと変わりますけどね。 例えば小数点以下切り捨てなら、5円が10日後に5.5円になって、小数点以下切り捨てで5円なので、いつまで経っても利息が発生しません。

関連するQ&A