• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:数学(大学入試レベル)の、この問題の解説の仕方)

数学(大学入試レベル)の、この問題の解説の仕方

このQ&Aのポイント
  • 個別指導塾の講師が高校生からの数学の質問に答えられない状況について
  • 明後日の授業で再び解説することを約束している背景
  • 角度の条件を持つ4次方程式と3次方程式の解の求め方について

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

解と係数の関係を利用するのではないでしょうか. (2) で求めた3次方程式は cos(2π/7), cos(4π/7), cos(6π/7) を解に持ちますよね.

noname#203668
質問者

お礼

 その一言で解決しました。 大変お恥ずかしいですが、忘れていました。 ありがとうございました。

その他の回答 (7)

回答No.8

この程度は、あっさり解いて欲しいんだが。 かって、東大でも出題された問題と同じ。 αが 8t^3+4t^2-4t-1=0 ‥‥(1) の一つの解であるとき 2α^2-1(つまり cos2θ)も解である事を証明せよ。 cos2θ=2α^2-1 に代入すると、8(2α^2-1)^3+4(2α^2-1)^2-4(2α^2-1)-1=64α^6-80α^4+24α^2-1=(8α^3)^2-80α^4+24α^2-1=途中の計算は省略=(ー8α)*(8α^3+4α^2-4α-1)=0 これは、cos3θについても同じ。θ=2π/7であるから、cosθ、cos2θ、cos3θは一致する事はない。 従って、cos2θ も cos3θも 8t^3+4t^2-4t-1=0 の解。 c=cosθ×cos2θ+cos3θ×cosθ+cos2θ×cos3θ=-1/2 になる事も分かるだろう。 別解として a=cosθ+cos2θ+cos3θ=α+(2α^2-1)+(4α^3-3α) → 8α^3+4α^2-4α-1=0 となるが、これが(1)と一致するから、a=-1/2 b=cosθ×cos2θ×cos3θ=(α)*(2α^2-1)*(4α^3-3α)=8α^6-10α^4+3α^2=(1)を使って次数を下げる=(2α^3-α^2-α)*(8α^3+4α^2-4α-1)+α^3+(α^2)/2-α/2=α^3+(α^2)/2-α/2 であるから、8α^3+4α^2-4α-8b=0 これが(1)と一致するから、b=1/8

noname#203668
質問者

お礼

ひとえに私の勉強不足でした。 東大の出題についても初耳でした。 ご回答ありがとうございました。

  • 112233445
  • ベストアンサー率40% (6/15)
回答No.7

解と係数の関係から求めるのが、この問題の模範解答になるような小問の作り になっていると思うのですが、正直、私もどうして 8α^3+4α^2-4α-1=0 の3つの解は cosθ、cos2θ、cos3θ になるのか 考え中ですが、別解としては、cosθ+cos2θ+cos3θをαで表し、8α^3+4α^2-4α-1=0 をもちいて、求めることができるのでないかと思います。 積のほうもこの調子でできると思うのですが。参考にもならない回答ですみません。  

noname#203668
質問者

お礼

 その別解も、今度考えてみます。 とりあえずこの場はお礼だけさせていただきます。 ご回答ありがとうございました。

回答No.6

>(1)cos3θ=cos4θを満たすとき、解のひとつがcosθであるような4次方程式を求めよ。 >(2)θ=2π/7のとき、cosθが解のひとつであるような3次方程式を求めよ。 (1)が(2)のヒントになっているが、因数分解して (1)から(2)を導出しない別解。 θ=2π/7から 7θ=2π → 3θ=2π-4θ ここで両辺のcosを取ると、cos3θ=cos(2π-4θ)=cos4θ となって(1)を使う事になる。 そして、この問題のbaseになってるのは 複素数。 と 言えば、塾講師やってるんだから 理解できるだろう。分からなかったりして。。。。w

noname#203668
質問者

お礼

 その解答は思いつきませんでした。 教えていただいて、理解だけはできました。 ご指導ありがとうございました。

回答No.5

情けないね、この先 同じ事をやるんじゃないか? >(1)と(2)は解決しているので、(3)だけでも構いません。 そんな調子では (1)と(2)も解決してないんじゃないか?見栄を張るなよ。 θ=2π/7 とすると、条件から、cosθ+cos2θ+cos3θ=a、cosθ×cos2θ×cos3θ=b ‥‥(※)である。 ここで、3次方程式の解と係数を使うだろう事に、気がつかなければならない。 (1) cos3θ=cos4θ=cos(2θ+2θ)=展開して、cosθ=αとすると 4α^3-3α=8α^4+1-8α^2 → 8α^4-4α^3-8α^2+3α+1=0 (2) 8α^4-4α^3-8α^2+3α+1=(α-1)*(8α^3+4α^2-4α-1)=0 α≠1は自明だから、8α^3+4α^2-4α-1=0 (3) 8α^3+4α^2-4α-1=0であり、(※)より3つの解は cosθ、cos2θ、cos3θ であるから、解と係数より a=-1/2、b=1/8。

noname#203668
質問者

お礼

 おっしゃるとおりです。  (1)(2)については、その場で解説して、とりあえずその生徒さんには理解してもらえた様子でした。 別解や、より良い解説はできていなかったかも知れませんが。  (3)だけでいいと言った理由は、見栄を張ったつもりではなく、(1)から教えてもらうと手間を掛けさせてしまうと考えたからです。 結果的には誤った判断だったようです。  大変失礼いたしました。

  • B-juggler
  • ベストアンサー率30% (488/1596)
回答No.4

ん~と、代数学屋さん(o`・ω・)ゞデシ!! とは言っても、現在絶賛失語中>< (休業中(o`・ω・)ゞデシ!!) (1)でお願いです。 cos^3 θ ではないですよね。 cos(3θ)ですよね。 紛らわしい書き方は控えていただけると、将来のσ(・・*)たちが助かります。  #まぁ、σ(・・*)はここら辺の担当しないでしょうし、  #もう教壇に立ててないと思いますけど。。 こういう場合は、皆さん書かれてありますが、 「見つけ出された」あるいは「用意された」 4次方程式、 (2)の三次方程式を、出していただいたほうが、早いかと思います。 そうしないと、(3)の解説はできませんよ・・・。 こちらが思っている式と違ってはいけませんし。 で、ですね。これちょっと違和感があります。申し訳ない。 (3)だけでいい、というのは同業としてお分かりになりませんか? (1)(2)がでていて、(3)を教えてください。ならやりやすいでしょう? 今は出てないですから。 良く学生さんにも書きますが、 どこまでやれているか、やれたところまで書いてください! って言うのが、 そのまま通用してしまいますよ>< 慌ててあるのは分かりますが、数学に携わる以上、こういうのは 最低限かと思うのですが・・・。  #学生さんになら、「丸投げするな!」と書く所ですよ>< とりあえず、(1)(2)の式を待ちます。 どう解説されるかは、また別として。 (3)の解説と回答はできるかもしれませんからね。 (=^. .^=) m(_ _)m (=^. .^=)

noname#203668
質問者

お礼

 (1)と(2)の式については、他の回答者様のおっしゃるとおりです。  紛らわしい書き方についても、お詫び申し上げます。大変失礼いたしました。  ご回答ありがとうございました。

  • eco1900
  • ベストアンサー率66% (59/89)
回答No.3

こんばんは。 質問の主旨が、今一つ分かりませんが・・・ 要するに【問題】を解答するにあたって「あなたからどのように解説しますか?」ということでしょうか。 仮に、上記のような主旨であるならば、現状解決なされている【問題】(1)や(2)をどのように解説(=結局は自己解答となりますが)したのか、文字にして公開した方がいいような気がします。 もし、よろしければそれらの「あなたなりの解説」を公開してみてはいかがでしょうか。 なぜかと言うと、あなたのその解説ぶりに対して「回答者」さんが良くも悪くも何らかのアプローチをしてくださるでしょうから。 意外にも現役高校生から、よい回答が得られるということもあり得ますよ^^。 「知ることと教えることとは違う」ということを、職業柄否が応でも常日頃体験してらっしゃる方のようですので、あえてご意見申し上げたまでです。 最後の文だけを見る限り・・・「(3)だけでも構いません」という表現は少し妙な質問の仕方のように思えますよ。 少なくとも「先生」という職業の方に対して、失礼は重々承知の上、ご意見させていただきました。

noname#203668
質問者

お礼

 質問の主旨が分かりにくかったことについても、私の説明不足でした。 申し訳ございません。  (1)と(2)には、以下のようなオーソドックスな解法を教えただけです。 (1)3倍角と2倍角の定理を使って整理する (2)因数分解して3次式を作る  ご回答ありがとうございました。

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.2

基本的な問いとして、あなたが普通にこの問題(3)を解くことができませんでした、という状態なんですか? それとも問題として出されたものに解答はできるけど、人に説明してもわかってもらえない、という状態なんですか? 前者の場合、期限までに生徒に解説できるまでの状態になるのはちょっと難しそうですけど。

noname#203668
質問者

お礼

 前者です。 今日の授業では生徒に納得してもらうことができたようです。 回答者様ほど上手な解説ではなかったかもしれませんが。  言うまでもなく、私の勉強不足が原因です。  ご回答ありがとうございました。

関連するQ&A