ベストアンサー 一様収束⇒広義一様収束は成り立ちますか? 2011/01/29 06:00 一様収束⇒広義一様収束 は成り立ちますか? 成り立たないなら簡単な反例をご紹介ください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Ae610 ベストアンサー率25% (385/1500) 2011/01/29 08:18 回答No.1 ・・・ハイ! (広義一様収束⇒一様収束は成り立たない!) 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 一様収束と広義一様収束 複素関数の冪級数展開おいて、広義一様収束と一様収束の概念があって、なぜこの使い分けをするかというと、R(a)をaにおけるべき級数展開の収束半径としたとき、特異点の近傍を含んでしまうと、前者は成り立つが後者が成り立たない場合があるから(例:1/1+z、R(0)=1)だと思います。 ここからが質問なのですが、R(a)=∞のときに、広義一様収束するが一様収束はしない例があるのでしょうか? 広義一様収束の定義がいまいちわかりません 広義一様収束の定義がいまいちわかりません。 『ρはいくらrに近くとってもよいが定数である』と記載されているのですが ρをいくらでもrに近くとっていいなら一様収束半径と広義一様収束半径は一致するのではと思うのですが、、、 どのように解釈すればいいのでしょうか? どなたか分かり易くご解説ください。 広義積分の収束するαを求める αは実数とする。この広義積分が収束するαの値とその時の広義積分の値を求めよ。 という問題で、なにからやればいいのかわかりません。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 広義一様収束関連 下記の証明問題をご教示下さい。 ■R=(-∞、+∞)上の連続関数F(x)に対して、 (1)F(x/n)→F(0)(n→∞) (2)この収束はR上で広義一様収束である。 (1)は分かるのですが、(2)が解けません。 何卒お願い致します。 次の広義積分の収束 以下の広義積分が α>-1ならば収束し、α≦-1ならば発散することを示すにはどうすればいいですか? 複素級数の広義一様絶対収束について ∑_{n=1}^{∞} 1/(z^2+n^2) が|z|<1で広義一様絶対収束することを示せという問題なんですが、解答の方針がさっぱり見えません。おそらく、∑_{n=1}^{∞} { 1/(z+n) + 1/(z-n) } の|z|<1での広義一様絶対収束性が分かっているので、このことを使うと思いますが、ここから手詰まりです。解答の指針だけで結構ですので、教えてください。 広義積分の収束判定について。 広義積分∫[0→∞]e^(-x^2)cos(2ax)dxが収束することを示せ。という問題を教えて欲しいのですが、特異点がある時や非有界の時、ロピタルの定理を使った判定などの収束判定の仕方がいまいち整理できていないので出来ればそれも含めて教えて欲しいです。 広義積分の収束する条件 ∫[x=0,∞] (x^p)sin(x^q) dx pは実数、q>0 という広義積分の絶対収束、条件収束するようなp,qの範囲をそれぞれ求めないといけないんですが、さっぱりわかりません。 Cx^s でおさえるのかなと思ったんですが無理みたいだし‥助けてください。 ∫[x=0~∞]logx/(1+x^2)の広義積分が収束することを確か ∫[x=0~∞]logx/(1+x^2)の広義積分が収束することを確かめよ という問題がわかりません。 判定法定理とロピタルの定理よりx^1.5logx/(1+x^2)がx=∞で有界であることを示せました。 ですが、x=0のときどうやってもx^λlogx/(1+x^2) (λ<1)が有界であることを示せません。 僕の予想ではλ=0.5となると思うんですがロピタルを使っても有界になりません。 なおこの広義積分は必ず収束します。 誰か教えてください。 おねがいします。 広義積分の収束or発散の判定 (1) ∫(0~1) (1-x^3) ^ -1/2 dx (2) ∫(0~1) (1-x^4) ^ -1/2 dx (3) ∫(0~π) (sinx+cosx) ^ -1 dx これらの広義積分の収束or発散を調べたく、(1)(2)は収束し、(3)は発散するそうなのですが、解き方がいまいちわかりません。分かる方がいましたから、教えて頂けると助かります。 広義積分の収束・発散 こんばんは。私は現在大学で微分積分を学んでいるものです。 広義積分の収束・発散を求めろという問題があるのですが、 関数f(x)が区間(a,b]で連続であり、|f(x)|≦g(x)、g(x)の(a,b)の積分が存在するとき、f(x)の広義積分が存在するとあるのですが、実際に問題を解くときは、どうやってg(x)を見つけるかわかりません。 ぜひ教えてください。 絶対収束について 実数列が任意の順序で収束しているときそれは絶対収束しますか?(逆は有名ですが。)もし反例があればそれもお願いします。 広義積分が収束する範囲を求める問題です 次の広義積分 ∫[1,∞](x^α logx)/(1+x)^β dx が収束するような実数α, βの範囲を求めてください。 出典は京大大学院(数理)の数学Iです。よろしくお願いします。 Re(s)>1,{1/n^s}が広義一様収束? Re(s)>1, f_n(s):=1/n^sの時, 関数列{f_n(s)}が広義一様収束 となる事を示したしたいのですが どのようにすれば示せますでしょうか? 一応,広義一様収束の定義は 「D⊂C, f_n,f:D→Cとする。{f_n}がfにD上広義一様収束する ⇔ ∀D'∈{D';D⊃D'は有界閉集合}, lim_{n→∞}sup{|f_n(z)-f(z)|∈R;z∈D'}=0」 だと思います。 広義積分 次の広義積分が収束するかどうか、調べてください。収束する場合はその値も求めてください。 ∫[1,∞]1/(x^3+1)dx 3次式の因数分解の公式を使うんでしょうか? 広義積分が収束する範囲について 広義積分が収束する範囲について この問題がわかりませんでしたので質問させていただきます。 回答を書き記します。 次の広義積分が収束するようなパラメータの範囲を定めよ。 I=∬D dxdy/|x|^(a)+|y|^(b) D:x^2+y^2≦1 回答 a>0,b>0のとき I1=∫(0→1)dy ∫(0→1)dx/x^(a)+y^(b) を考えればよい。 x/y^(b/a)=tとおく。 dx/x^(a)+y^(b)=1/y^(λ)×dt/t^(a)+1 となるようにすると λ+b/a-b=0 すなわち λ=b/a(a-1) I=∫(0→1)dy/y^λ×∫(0→y^(-b/a))×dt/t^a+1 ここでy~0のとき ∫(0→y(-b/a)) dt/t^a+1 ~Cy^(-b(1-a)/a), a<1のとき ~C|logy| a=1のとき ~C a>1のとき となる。 a<1なら I1~C∫(0→1)dy で明らかに収束 a=1のときλ=0で I1~C∫(0→1)|logy|dyとなりこれも収束 またa>1の場合は I1~C∫(0→1)dy/y^λ 以上よりこれが収束するための必要かつ十分な条件はλ<1 すなわち b/a(a-1)<1 ab<a+b a=0 またはb=0のとき I1=∬D dxdy/1+|y|^b などとなり明らかに収束 以上より a≦0 またはb≦0 または ab<a+b ここまでが回答です。 私はIをだすところまでは出来たのですが 「y~0のとき~」の文より↓がお手上げです 記号の意味を調べてみたのですが 漸近的に等しい??という意味で出てきました。 少し自分の力ではここからは解けそうにもありません。 よろしければ「y~0のとき~」から説明をお願いします。 よろしくお願いします 広義積分の問題です ∫1/(x^3+1)dxの広義積分が収束することを示し値を求めてください。 解答の際にはなぜ収束するかも書いてくれるとありがたいです。御願いします 広義積分 広義積分が収束するかどうか調べてください。収束する場合はその値も求めてください。 (1)∫[1,∞]1/{x(x^2+2)}dx (2)∫[1,4]x/√(4x-x^2)dx 途中計算も書いてくださると、ありがたいです。 広義積分の収束と発散の問題 ∫[0,π](1/√(sin x))dx この広義積分の収束と発散を判定せよという問題なのですが解放を教えてください。 現在講義で習ったのが f(x):[a,b)で連続 ョμ≧1 lim(x→b-0) (b-x)^μ*f(x)が収束 ならば ∫[a,b]f(x)dxは発散 という内容なのでこれをうまく利用するみたいですが、まったく解法が浮かびません… どうかお助け願います。 広義積分の問題です 広義積分∫sinx/x^α dxは0<α<2ならば収束することを示せ。またこの積分は1<α<2のときのみ絶対収束することを示せ。ただし積分区間は0~∞とする。まったくわからないので丁寧に教えてくれればありがたいです。よろしく御願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など