ベストアンサー 偏微分に自信がある方お願いします 2009/12/17 22:51 f(x,y)=2xy/(x^2+y^2)[(x,y)≠(0,0)] f(x,y)=0 [(x,y)=(0,0)] について連続性、偏微分可能性、全微分可能性について教えてください みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2009/12/17 23:32 回答No.1 それぞれの言葉の定義は何ですか? それぞれの定義を補足にお書き下さい。 定義が分からなければ解く以前の問題ですので教科書の最初から勉強しなおす必要があるでしょう。 連続性について x=-yという関係を保ちながらf(x,y)でx→0としてみてください。 f(0,0)と等しくなりますか? 偏微分可能性、全微分可能性について fx,fyを計算して見てください。 画像を拡大する 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A √(|(xy)|)が点(x,y)=(0,0)全微分可能か調べようとして √(|(xy)|)が点(x,y)=(0,0)全微分可能か調べようとしています。 全微分の定義から考えると Δf=f(x+Δx,y+Δy)-f(x,y)より Δf=√{|(x+Δx)(y+Δy)|}-√(|xy|)で、x=0,y=0を代入すると、 Δf=√(|ΔxΔy|) ここで、(Δx,Δy)→(0,0)より、 Δf=0 よって、Δf=0Δx+0Δy+ε√{(Δx)^2+(Δy)^2}と表せるので、全微分可能である。 となりそうなのですが、そもそも√(|(xy)|)は(x,y)=(0,0)では微分できない気がしています。(点0,0では不連続!) 全微分可能ならば連続であるはずなので、これは矛盾しているように思います。 何か考え方が間違っているのでしょうか。 偏微分係数の連続性の証明 関数 f(x,y)= { 0 if(x,y)=(0,0) xy/√(x^2+y^2 ) otherwise } fの偏微分係数の連続性について確認してください。また、fは点(0,0)において微分可能でないことも示す。 偏微分について 偏微分を学習していると(∂^2/∂x∂y)F(x,y)がでてきました。これはxyどちらで先に偏微分をするのでしょうか? また(∂^2/∂x^2+∂^2/∂y^2)F(x,y)は (∂^2/∂x^2)F(x,y)+(∂^2/∂y^2)F(x,y)と同義ですか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 全微分の問題が解けなくて困っています 全微分の問題です。解けなくて困っています。 f(x,y)=|xy|について次を証明せよ (1)xyが0でないとき、fx(0,y),fy(x,0)はいずれも存在しない。 (2)点(0,0)での偏微分係数はいずれも存在し、f(x,y)は(0,0)で全微分可能である。 よろしくお願いしますm(--)m xについての偏微分 2変数関数f(x,y) f(x,y) = xy^2/x^2+y^2 ((x,y)≠(0,0)のとき) = 0 ((x,y)=(0,0)のとき) をxについて偏微分するとどうなりますか?また、(0,0)での偏微分はどうしたらいいのでしょうか? 宜しくお願いします。 f(x,y)=√(?xy?)の全微分可能性について f(x,y)=√(?xy?)の全微分可能性について f(x,y)=√(?xy?)の点(0,0)における全微分可能性について、全微分可能の定義に従って調べております。先日、アドバイスをいただいたことを参考に考えてみましたが、この考え方でよろしいのか、チェックしていただければと思います。 Δf=f(x+Δx,y+Δy)-f(x,y)より Δf=√{?(x+Δx)(y+Δy)?}-√(?xy?)で、x=0,y=0を代入すると、 Δf=√(ΔxΔy) ここで、(Δx,Δy)→(0,0)より、 Δf=0 よって、Δf=0Δx+0Δy+0√{(Δx)^2+(Δy)^2} と表せるので、全微分可能 以上、宜しくお願い致します。 偏微分 数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!! 偏微分に関する質問です。 偏微分に関する質問です。 f(x、y)=x^2+xy+y^2 通常の問題だとxやyで偏微分しろという問題が出題されますが、x^2で偏微分せよという問題は存在しますか?その場合、xyのxの取扱いを教えて下さい。 微分の問題です f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください 全く分からないので解答解説をおねがいします! 偏微分(?)について すべての実数xについて微分可能な関数f(x)において f(x+y)=f(x)+f(y)+xy…(A) f'(0)=1 (1)f(0)の値を求めよ。 (2)f(x)を求めよ。 という問題ですが、(1)はいいとして、(2)で計算していくときに普通にやるならば導関数の定義に持ち込むことになると思います。ただこのタイプの問題としてはもちろん毎回違う形で関数が与えられますから、式変形の最中にどうすればいいか止まってしまうこともありえます。 ところが、この問題の場合すべてのxにおいて微分可能が保障されているので「(A)において、xを固定し、yで微分する」というやり方(多分これが偏微分だと思うのですが...)を用いるとすぐに解けますし、迷う箇所もありません。 これは予備校で教わったのですが、もちろん教科書には書かれていません。確かに(x+y)^2=x^2+2xy+y^2に対してこれと同じ事をおこなうと、両辺等しくなり等号は成り立ちます。つまり恒等式であり続けます。しかしこの解法について根本的に理解したとは思えませんし、教科書にないようなこういう解答は許されるのでしょうか? 偏微分 偏微分のやり方が分かりません。 f(x,y)=-x^2 + 2xy-x-y^2+y に対して ∂^2/∂x∂yが求めたいのですが、 どのような順番で行えばよいか 分かりません。 どなたかできるだけ丁寧な回答を お願い致します。 偏微分可能性を示すには… こんばんは。 f(x,y)=(x^2((1+x)^2-2y)+y^2((1-y)^2)+2x)/(x^2+y^2) ((x,y)≠(0,0)のとき),1 ((x,y)=(0,0)のとき) (1)連続であることを示せ。 (2)xについてもyについても偏微分可能であることを示せ。 f_x(0,0),f_y(0,0)=? (3)全微分可能であるか答えよ。 という問題です。(1)はわかったのですが、(2)以降具体的にどのように示したらよいのかがよくわかりません。偏微分、全微分可能についての定義はわかるのですがこのような問題に具体的にどうアプローチすればよいのか参考書に具体的な記述が無くて困っています。 どうか教えてください。お願いします。 偏微分をド忘れしてしまいました. 偏微分をド忘れしてしまいました. 例えば,f(x,y) = x^2 + 3xy という関数を考えたとき, ∂f/∂x = 2x + 3y ですよね. ここでyがxの関数,例えば y(x) = x^4 としたら, ∂f/∂x = 2x + 3y = 2x + 3x^4 になるでしょうか, それとも最初にf(x,y) = x^2 + 3xy = x^2 + 3x^5 としてから ∂f/∂x = 2x + 15x^4 とするのでしょうか. 偏微分についての質問です。 偏微分についての質問です。 問題は f(x,y)=x^4 + 6(xy)^2 + y^4 - 6y^2 の極値を求めよ。 という内容です。 (fをxについて1階偏微分したもの) = 0 (fをyについて1階偏微分したもの) = 0 の連立方程式を解いて極値をとる点を調べようとすると、 何度やってもyが複素数になってしまいます。 回答よろしくお願いいたします。 分数の偏微分に関する質問 【分数の偏微分】 私の持っているテキストにあるどうしても分からない偏微分の問題に関する質問をさせてください。 f(x、y)=1/(xy) x^2で偏微分せよという問題なのですが、1/(xy)のxをどうすればいいでしょうか?過程と回答を教えてください。お願いします。 微分可能ならば連続? どこかでy=f(x)がある点で微分可能ならばその点で連続である的なことが書いてあるのを見た気がしましたが 例えば、y=f(x)がx=2で微分可能と言うと、 lim(x→2+0)f '(x)=lim(x→2-0)f '(x) ってことですよね? これじゃ連続って言い切れない気がしますが、ちょっとそこらへんの部分を教えてくださいお願いします 以前も質問しましたが解決できませんでした。微分の問題です。 f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください 微分方程式 2xy(dy/dx)+x^2-y^2=0 という微分方程式を完全微分形として解きたいのですが、うまくできません。 まず、(∂/∂x)2xy=2yで、(∂/∂y)(x^2-y^2)=-2yなので符号が違うため完全微分形にならないのです。。。 どなたかわかりやすくお願いします。 偏微分の問題です。 偏微分の問題です。 D = {(x,y)∈R^2 | x>0, y>0} x*[∂f/∂x] - y*[∂f/∂y] = 0 ならば、 f(x,y)は1変数の関数g(t)によって、f(x,y)=g(xy)とあらわされることを示せ。 偏微分について 偏微分をする問題で、自分でやってみたのですがきれいな式が出なくてこれで合っているのか…。 助言をおねがいします。 f(x,y)={(x^2)y}/{(x^2)+(y^2)} ただし、(x,y)≠(0,0) 答 ∂f/∂x=2xy/{(x^2)+(y^2)}-{2(x^3)y}/{(x^2)+(y^2)}^2 ∂f/∂y=x^2/{(x^2)+(y^2)}-2(x^2)(y^2)/{(x^2)+(y^2)}^2 これであってますか? ちなみにこれって、最終的には(∂^2)f(0,0)/∂x∂y , (∂^2)f(0,0)/∂y∂x を求める問題なのですが、私の計算だとどちらも0になっちゃうのですが…。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など