• ベストアンサー

対数変換についてなんですけど・・

私はホントに微分や積分、対数変換といったことが苦手でまったくできません(泣) それで、みなさんからしてみれば簡単なことだと思うのですが、わからないので質問します。 C=C0×e-kelt ⇒CイコールCゼロかけるeのマイナスkelt乗という式なんですけど、これを対数変換すると、どうなりますか? わかりやすく、教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.2

> log10底として常用対数を取ったときのやり方 ほとんど変わりはありません。 自然対数(log(・))でも log(xy) = log(x) + log(y) log(x^z) = z log(x) の性質は同じです。ただ、log(e) が 1 ではなく 0.434294482... です。 ですから、 C = C0 e^(-kelt) の両辺の常用対数を取って log(C) = log( C0 e^(-kelt) )     = log(C0) + log(e^(-kelt))     = log(C0) + (-kelt) log(e)     ≒ log(C0) - 0.4343×kelt

amai_cocoa
質問者

お礼

ありがとうございます。 とってもわかりやすかったです。 助かりました。 またわからないことがあったら質問するかと思いますけど、その時はよろしくお願いします。

その他の回答 (2)

  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.3

#2誤記訂正 誤) 自然対数(log(・))でも → 正) 常用対数(log(・))でも

  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.1

C = C0 e^(-kelt) ⇔ ln(x) を自然対数として ln(C) = ln(C0) - kelt ln(xy) = ln(x) + ln(y) ln(x^z) = z ln(x) ln(e) = 1 なので、 C = C0 e^(-kelt) の両辺の自然対数を取って ln(C) = ln( C0 e^(-kelt) )     = ln(C0) + ln(e^(-kelt))     = ln(C0) + (-kelt) ln(e)     = ln(C0) - kelt

amai_cocoa
質問者

お礼

わかりやすい説明ありがとうございます。 宜しければ、log10底として常用対数を取ったときのやり方も教えてくれませんか?

関連するQ&A