関数の極限
lim(x→-3)1/(x+3)^2 ・・・(1)の極限とlim(x→∞)cosx/x・・・(2)の極限値、の求め方がわからないので、質問します。
(1)の解説は、lim(x→-3)(x+3)=0 ,1/(x+3)^2>0 から極限∞と書いてあります。分母が限りなく0に近い正の値になるので、∞と考えて良いのでしょうか、しかし他の極限を求める問題では(関数にいろんな計算した後)xが近づく数を関数に代入したりして求めているので、自分の考えも間違っていると思います。お返事ください。
(2)の別解では、-1≦cosx≦1であるから x>0のとき -1/x≦cosx/x≦1/xと続きます。xは負の値から∞に近づくかもしれないのに、x>0のときに限るのは∞(限りなく大きい正の数)に、近づいた後のときだけを考えているのでしょうか?x>0にしていい理由を教えてくださいお願いします。
お礼
はい、回答ありがとうございます。 理解できました。