- ベストアンサー
Taylor展開に関する問題が解けません。
関数f(x)はx=aの近傍でC^n級でf´(a)=・・・=f^(n-1)(a)=0,f^(n)(a)≠0である。 f(x)をx=aの周りでTaylor展開をして、nが偶数でf^(n)(a)>0のとき、f(x)はx=aで極小値をとることを示せ。 という問題が分かりません。どうしたらよいでしょうか?
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
Taylor展開 極小値 で 検索 例えば、・・・
関数f(x)はx=aの近傍でC^n級でf´(a)=・・・=f^(n-1)(a)=0,f^(n)(a)≠0である。 f(x)をx=aの周りでTaylor展開をして、nが偶数でf^(n)(a)>0のとき、f(x)はx=aで極小値をとることを示せ。 という問題が分かりません。どうしたらよいでしょうか?
Taylor展開 極小値 で 検索 例えば、・・・