ベストアンサー 点とは・・・ 2004/10/18 00:20 x,y,z=(0,0,0)(=点P)とは開集合でしょうか閉集合でしょうかそれともどちらでもないのでしょうか?? 自分的には点Pは範囲内でそのε近傍は範囲外なので 閉集合だとは思うのですがいかがでしょうか?? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー elmclose ベストアンサー率31% (353/1104) 2004/10/18 00:28 回答No.2 点Pのみからなる集合は、閉集合です。 理由は書かれている通りです。 εをいくら小さくとっても、点Pのε近傍はその集合に含まれませんから。 質問者 お礼 2004/10/18 01:52 ご回答ありがとうございます 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) elmclose ベストアンサー率31% (353/1104) 2004/10/18 00:25 回答No.1 質問の意図が少しわかりませんが、 点自体は集合ではないと思います。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 位相 X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。 開近傍とは? Xが空間でxがXの点で、Xの部分集合Uがxを含む開集合であるとき Uはxの開近傍であるという。 と本に書かれてあるのですが、 開近傍とは一体どういうことなのでしょうか? Uという集合が開集合であり、空間Xと比べて点x近傍にある集合である という意味でこういう名前がついているのでしょうか? 閉包と集積点と内部 閉包と集積点と内部(及び境界)の関係を、初心者でもわかるように教えていただけないでしょうか。特に、それらが集合において何を意味しているのかを教えていただけないでしょうか。 閉包A ̄は、 任意のxの近傍V(x)において、V(x)∩A≠φ(φは空集合)であるxの集合 集積点a(A)は、 T∩(A-{x})≠φとなるxの集合 (Aの相違な元列が1点Pに近づくときのPのこと…?) 内部i(A)は、 Aに含まれる位相空間(X,τ)の開集合全体の和集合である。i(A)={a∈A:V(a)⊂Aとなる近傍V(a)が存在する} 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 距離と位相 x,y,zが数直線上にならんでいます。d(x,y)=d(y,z)=1, d(x,z)=2という感じです。 つまり、それぞれ一ずつ離れて、x,y,zの順番でならんでいることになります。 定義域のほうも通常のRでけっこうです。通常のRの距離を考えて、ここから開集合、位相を導入します。このときの位相はつぎのようなものでよいのでしょうか。 (x), (y), (z), (x,y), (y,z) (x,y,z)と空集合。 ごく初等的な例で、距離と位相の関係をつかみたく思います。当方文系ですので、上記で誤っていた場合ですが、どこが違うのかなるだけ初等的にご説明いただければ幸いです。 どの点についても、うまく開球をとれば当該集合に含まれるという開集合の定義が焦点だと思います。この開集合の理解があっていれば、間違っていないように思いますが、自信はありません。 開集合の定義が分かりません VをRの部分集合とおく。 0に限りなく近いが0じゃない非負の値をαとする。 Vに含まれる任意の元xに対して、 0<ε=αとおくとxのα-開近傍={y∈R|d(x, y)<α}=x∈V⊂V よってVは開集合なのだと思うのですがV=[0, 1]でも成り立つと思います。 開集合の定義を具体的に教えてくれませんか? 写像の連続性について (Z,d)から任意の距離空間(Y,d_Y)への任意の写像fが連続であることを証明したいです。 ただし、Zは整数全体の集合でd(x,y)=|x-y|です。 任意の写像fの連続性について証明するのでYの任意の開集合Oについてf^(-1)(O)がZの開集合であることを示そうと考えたのですが、fが任意なのでf^(-1)もどのような様子かわからず困っています。 以下、自分の回答を掲載します。間違えている点と、どのように考えるべきかを教えてください。 任意のx,y∈Zに対しf(x),f(y)が存在する。 Oは開集合なのであるε(>0)が存在し、 f(y)∈N(f(x);ε)⊂O ⇔ y∈f^(-1){N(f(x);ε)}⊂f^(-1)(O) ここまでです。よろしくお願いします。 陰関数定理について 2変数の陰関数定理 R^2のある領域AでF(x,y)は連続、Aの一点(x0,y0)の近傍Uでyについて偏微分可能かつ∂F/∂yはUで連続とする。もし、F(x0,y0)=0,∂/∂y(x0,y0)≠0ならば(x0,y0)の十分小さい近傍Vでy0=f(x0),F(x,f(x))=0をみたす連続関数y=f(x)が唯一存在する。 この定理で、開集合V1でy=f1(x),F(x,f1(x))=0となり、開集合V2でy=f2(x),F(x,f2(x))=0となったとき、V1∩V2で,f1=f2は成り立ちますか? よろしくお願いします。 (再び)位相の質問です。 次の問題がわかりません。 なにか分かりやすいアドバイスをお願いします。 問. A= {x∈R :a≦x<b} =[a,b) (a<b), B= {y∈R :c≦y<d} =[c,d) (c<d) とするとき、次の問に答えよ。(証明つきで) (1)A×BはR^2の開集合であるか。 (2)A×BはS×Sの開集合であるか。 (1)の証明は、「A×Bに属する点で、εをどんなに小さくとっても、 その近傍の点がA×Bの部分集合にならないものがあるから、 開集合ではない。」でいいのでしょうか。 (2)は、まずAとBがSの開集合であることを示すために、 AとBがSorgenfrey直線の元であることを言いたいのですが、 どう証明していいのかわかりません。 ユークリッド平面と連続開写像 「fをユークリッド平面R2から実数直線R1への写像としてつぎのように定める。R2∋X=<x1,x2>に対して、f(x)=x1 このとき、fはR2からR1への連続開写像であることを証明せよ。」 以下のような流れで証明できて合っていますでしょうか? また、もっと違う方法、簡単な方法はありますでしょうか? 宜しくお願いします。 ------------------------------------------------------- X(x1,x2)とY(y1,y2)の距離d(ユークリッド空間R2の距離)は d(X,Y)=√{(x1-y1)^2+(x2-y2)^2} f(X)とf(Y)の距離d(ユークリッド空間R1の距離)は d(f(X),f(Y))=√(x1-y1)^2 そうだとすると √(x1-y1)^2 <= √{(x1-y1)^2+(x2-y2)^2} だから ∀ε>0,∃δ>0, d(X,Y) < δ=ε ⇒ d(f(X),f(Y)) <= d(X,Y) < ε fは連続である。 fによってR2の開集合はR1の開集合に写像されることは、連続性と同じ理由で明らか。 ∵Xの任意のε(X)近傍はf(X)のε(X)近傍の上に写像されるから、R2の開集合はR1の開集合に写像されることを意味していて、fは開写像である。 ∴fはR2からR1への連続開写像である。 ---------------------------------------------------------------- 集合・位相 集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。 集合と位相 (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。 位相空間の質問です テストにむけてどうしてもわからないところがあります (X,O)を位相空間とする 点a∈Xの近傍全体の集合族をaの近傍系といいN(a)で表す また点aの開近傍全体の集合族をaの開近傍系といい、No(a)で表す (1)a∈X ⇒ X∈No(a)⊂N(a) (2)N∈No(a) ⇒ a∈N N∈N(a) ⇒ a∈N (3)N∈N(a)、N⊂M⊂X ⇒ M∈N(a) この1,2,3を示したいです 教えてください 幾何学の問題です。 幾何学の問題が解けなくて困っています。 どなたかわかりやすく教えてください。 よろしくお願いします(> <;) S^2={(x,y,z)∈R^3| x^2+y^2+z^2=1} をR^2の開集合と微分同相な開集合で被覆せよ。 そのときの微分同相写像も記せ。 という問題で、Rは実数全体の意味です。 直積位相 X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか? (1)一点集合{X}⊂R^n(X∈R^n) (1)一点集合{X}⊂R^n(X∈R^n) (2)S(X,r)={Y∈R^n;|X-Y|<r} の内点が存在しないことは感覚的には分かるのですが,これを綺麗に示すとしたらどうすればよいでしょうか? 任意の点について,そのε近傍自体がもとの集合に丸ごと入るようなε>0が存在しないことを言えばいいと思うのですが,それを言葉で綺麗に表現できません. よろしく願いします. 球面上の3点と半径から球の中心点を求める 球面上の3点P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)と半径rが与えられたとき、球の中心点Pq(xp,yq,zq)を求める方法を教えて下さい。 球面上3点と半径rが条件として与えられた場合、球の中心点は2個ありそうな気もしますが(何らかの条件で...)、よく分かりません。 何方か、宜しくお願いします。 点と曲面の距離 曲面 x^2 + z^2 - 10y = 0 と、3次元空間における点と(ただし、x^2 + z^2 - 10y ≧ 0 なる点)の距離を求めたいのですが、どうしたらいいのでしょうか。曲面の任意の点の法線ベクトルは(x, -5, z)というのは解かったのですが…。よろしくお願いします。 ちなみにあまり関係ないかもしれませんが曲線の範囲は、0≦y≦10 ですね。 何故特異点? 「複素数のはなし」という本に、sin(z) / z は z=0 に特異点を持つと書いてありました。 特異点ってその近傍では正則でその点でだけ正則じゃない点ですよね? 正則って導関数が連続である事ですよね? (d/dz) {sin(z) / z} = (1/z){cos(z) - sin(z) / z} (1) Excelでf(x) = (1/x){cos(z) - sin(z) / z}のグラフを書かせたら(-1,1)でほぼ f(x) = -x に比例した連続なグラフが出てきて、 少なくとも実数の範囲では(1)は連続に思えます。 複素数だと(1)は連続ではないんでしょうか? 位相の問題(距離空間)について 以下の問題のヒントをくださいm(、、)m 距離空間(X,d)の点aのε近傍U(a;ε), 点bのδ近傍U(b;δ) について. (1) d(a,b)≧ε+δ ⇒ U(a;ε)∩U(b;δ) =φ を示せ. (2) d(a,b)<ε+δ ⇒ U(a;ε)∩U(b;δ) ≠φ であるといえるか? 証明または反例を示せ. (3) U(a;ε)はXの開集合であることを証明せよ. (1) U(a;ε) = {x∈R^n | ||a-x||<ε} U(b;δ) = {y∈R^n | ||b-y||<δ} とかける z∈U(a;ε)∩U(b;δ) をとると ||a-z||<εかつ ||b-z||<δ をみたす このとき d(a,b) = ||a-b|| = ||a-z+z-b|| ≦ ||a-z||+||z-b|| <ε+δ ∴ε+δ>d(a,b) よって,ε+δ≦d(a,b) ⇒ U(a;ε)∩U(b;δ) =φ ■ (2) 成り立つとおもうのですが証明がどうすればいいのか‥‥ (3) 近傍の定義より明らか? よろしくおねがいします。 開集合 a=(a1,a2,…,an)がR^nに含まれδ>0のとき Bδ(a)={x;||x-a||<δ} は開集合であることを示せ。 この問題なんですけど 与式=Dとすると点aのδ近傍はDに含まれるので点aはDの内点で任意の点なのでDは開集合である で合ってますか?あんま自信ないもんで…間違っていたらご教授願います。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご回答ありがとうございます