- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
y=5^(logx) logy=(logx)(log5) y=e^(logx)(log5)=[e^(logx)]^(log5)=x^log5 ∫(1→e)[5^(logx)]dx=∫(1→e)[x^log5]dx=[x^(log5+1)/(log5+1)](1→e) =[e^(log5+1)-1]/(log5+1)=(5e-1)/(log5+1)
y=5^(logx) logy=(logx)(log5) y=e^(logx)(log5)=[e^(logx)]^(log5)=x^log5 ∫(1→e)[5^(logx)]dx=∫(1→e)[x^log5]dx=[x^(log5+1)/(log5+1)](1→e) =[e^(log5+1)-1]/(log5+1)=(5e-1)/(log5+1)
お礼
ありがとうございます!