- ベストアンサー
実数解を持つということ
(1)XsinX-cosX=0 (0,π/2) (2)2^X+2^-X=3X(0,1) これらが、示された区間で実数解を持つことを証明せよというのが、どうやってとくのかよく分からないのですが。 普通に微分して増減表を書きX軸と交わることを書けばそれでいいのでしょうか。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
>…普通に微分して増減表を書きX軸と交わることを書けばそれでいいのでしょうか。 グラフを描けば許容されますが、厳密にいうと不十分です。これは「中間値の定理」を適用するのです。 (1) f(x)=xsinx-cosx (0,π/2) f(0) = -1<0, f(π/2) = π/2>0。f(x)は区間(0,π/2)で連続だから{←これをいう} 中間値の定理より{←これをいう}、区間(0,π/2)で少なくともひとつ実数解を持つ。 {なお、f'(x)=2sinx-xcosx = 2cosx(tanx - x/2)>0となり区間(0,π/2)で単調増加なので、実は区間(0,π/2)で唯ひとつ実数解を持つ;となります。これは、言及しなくてもいいでしょう。} (2)g(x)=2^x+2^(-x)-3x (0,1) g(0) = 2 >0, g(1) = -1/2 <0 。g(x)は区間(0,1)で連続だから{←これをいう} 中間値の定理より{←これをいう}、区間(0,1)で少なくともひとつ実数解を持つ。
その他の回答 (1)
- postro
- ベストアンサー率43% (156/357)
関数f(x)が連続であることを宣言して、範囲の両端でのf(x)の値が正負で分かれることを確かめれば (その範囲の間でf(x)のグラフがx軸を横切ったことになり)実数解があるこを証明したことになります。 f(x)=XsinX-cosX (0,π/2) f(x)=2^X+2^-X-3X (0,1) としてやってみてください。
お礼
はやい回答をありがとうございました。大変参考になりました。!!!
お礼
丁寧な回答を本当にありがとうございました。とても助かりました。!!!