AB=AC=AD=13, BC=BD=13, CD=10 である三角すいABCD の体積
「AB=AC=AD=13, BC=BD=13, CD=10 である三角すいABCD の体積を求めなさい。」と言う問題の解説部分についての質問です。
---------<解説(「・・・#」は質問のために追加)>---------
A から平面BCDに下ろした垂線の足をHとする。AB=AC=ADより, H は△BCDの外心となる。
△BCD は BC=BD の二等辺三角形だから, BH とCD の交点 M は CD の中点になる。
∴BM=√(13^2-5^2)=12=AM
また△ABMで,M からABに下ろした垂線の足を N とすると, AN=BN=13/2
∴cos∠ABM = BN/BM = 13/24 (・・・#)
sin∠ABM = √407 / 24
よってAH = 13sin∠ABM = 13√407 / 24
したがって三角すいABCDの体積は,(1/2)・10・12・(13√407 /24)・(1/3)=65√407/6
---------------------------------------------
#の部分でなぜcos∠ABM = BN/BMになるのですか。