締切済み 微分方程式について 2013/11/01 13:23 L(U)=d^2U/dx^2 - U =0(0<x<1) 境界条件U(0)=0 U(1)=1 この微分方程式を1次元2次要素を用いて解くという問題がわかりません。 お願いします。教えてください。 みんなの回答 (2) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2013/11/03 07:44 回答No.2 「用いて解く」と書いてあるから、戸惑うのです。 これは、微分方程式を解く問題ではなく、 差分近似せよというだけの問題です。 通報する ありがとう 0 広告を見て他の回答を表示する(1) spring135 ベストアンサー率44% (1487/3332) 2013/11/01 21:37 回答No.1 FEMであれば方程式を変分形式に変換して1次元2次要素を用いて離散化し、節点値で偏微分して連立方程式を導き、境界条件を入れたのち、方程式を解いてください。コンピューターがあるほうが大次元(多節点、多要素)の方程式を解けて精度が上がります。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 微分方程式 微分方程式 d^2u/dx^2=1 0<x<π/2 境界条件u(0)=0、u(π/2)=0 を有限差分を用いて解く問題なのですがどなたか教えてください 微分方程式について 次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。 微分方程式の解法 d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 この2階の微分方程式を解けという問題ができません。 dy/dx=z と置いて、1階の微分方程式にして解こうとしたのですが、exp(-x^2)が出てきてしまいました。これは確率積分みたいに積分できるのでしょうか。 回答よろしくお願いします。 微分方程式 微分方程式 d^2y/dx^2=2y^3+2y をみたす関数y(x)を求めよ。ただし,境界条件は,y(0)=0,dy/dx(x=0)=1 1・2次元の波動方程式 ∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか? 微分方程式 こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・ 偏微分方程式の解き方を教えていただけないでしょうか 偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。 微分方程式 (d^2)φ/dx^2=eNa/ε0εs 境界条件 x=-xp:dφ(x)/dx=0 (pはxの添え字です) x=0:φ(x)=0 これをφについて微分方程式を解きたいのですが… ちなみに解答は φ(x)=eNa/ε0εs{(x^2/2)+xpx} (pはxの添え字です) です。お願いします。 微分方程式 微分方程式 u=f(x) d^4 u/dx^4=u、f(0)=0 uを求める 固有値問題 微分方程式 固有値問題です。 (d^2/dx^2)*u(x)=λ*u(x) 境界条件 du(0)/dx-u(0)=0 du(1)/dx-u(1)=0 (d^2u(x)/dx^2)→u(x)をxで二階微分 u(x)→xを変数とする関数(固有関数) λ→固有値 という問題をλが正の時、0の時、負の時にわけて解きたいのですが解き方がわかりません。 よろしければ教えて下さい。 2階微分方程式の解法 d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 上記の微分方程式をルンゲクッタ法を使って数値的に解きたいのですが、どのように x→∞ : y→0 の境界条件をいれればいいかわかりません。どなたか教えて頂けないでしょうか。回答よろしくお願いします。 微分方程式を解く問題が分かりません。 微分方程式を解く問題が分かりません。 次の微分方程式が解けません。 {(d^2)x}/{d(t^2)}+2ε(dx/dt)+(ω^2)x=0 ただしε<ωとする。また初期条件をt=0でx=0、dx/dtでv0とする。 が解けません。x=e^(αt)とおいて解いていくようなのですが・・・。 よろしくお願いします。 微分方程式 こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。 偏微分方程式について ∂u/∂t = ∂^(2)u/∂x^(2) (0 < x < L , t > 0) u(0,t) = a , u(L,t) = b , u(x,0) = f(x) ただしa、bは定数であり、Lは正の定数である。 (1)∂u/∂t = 0 を満たす解 u0(x) を求めよ。 (2)v(x,t) = u(x,t) - u0(x) が満たす偏微分方程式および 境界条件を導け。 -------------------------------------------------------------------------- という問いです。 境界条件がu(0,t) = u(L,t) = 0 のパターンならわかるのですが こちらのパターンは全く手付かずです。。。 わかるかたいましたらお願いいたします。 微分方程式 (d^2y/dx^2)+2(dy/dx)+y=e^(-x) 条件:x=0のとき、y=0, dy/dx=0 上の微分方程式がどうしても分かりません。 すごく簡単な問題だと思いますが、悩んでいます。 分かる方、教えていただきたいですm(_ _)m 微分方程式について 微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします 偏微分方程式です 関数u(x,y,z)が偏微分方程式 d^2u/dx^2+d^2u/dy^2+d^2u/dz^2=ln(r) を満足していて、r=√(x^2+y^2+z^2) です。 このとき、 (r、θ、φ)(ただし、θは極角、φは方位角です)を球座標としてuがrのみに依存するとき、 uの満足する微分方程式を求めろ、とあるのですが、 全く見当もつきません。 なるべく噛み砕いたご説明をお願いします。 微分方程式の解き方 この微分方程式の解き方を教えてください d^2u/dφ^2 + u = 1/l 楕円の問題で出てきた微分方程式で、uをφの関数として一般解を求めよ、という問題です。 三角関数でおいて解いてみたのですが、そのあとの問題との兼ね合いが悪く、間違っている気がしてなりません。 かなり初歩的な質問かもしれませんがよろしくお願いします。 常微分方程式の問題です 常微分方程式の問題です。 初期条件 x = 1のとき u = 1 {1 - (x - 1)*u}du/dx = u を x = 1を中心とするべき級数による解法で解け。 という問題なのですがまったくわかりません。 御回答よろしくおねがいします。 連立微分方程式の問題 x, u, v,を実数,a, τを実定数とする。次の連立微分方程式を解いてu, vを求めよ。 式は添付画像をご参照ください。 という問題です。 vを消去してuの微分方程式に書き換えたところ d4y/dx4(u)+(4a^2)(d4y/dx4)(u)=0 という式が得られてこの式を解くことができなくて... 私は間違っているのかそれとも別のやり方でやるべきですか。 この連立微分方程式の解き方をご存知の方がいらっしゃいましたら、ご指導お願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど