ベストアンサー 微分方程式 2010/06/17 13:38 微分方程式 d^2y/dx^2=2y^3+2y をみたす関数y(x)を求めよ。ただし,境界条件は,y(0)=0,dy/dx(x=0)=1 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2010/06/17 17:24 回答No.2 なるけど、楕円積分にもつれこむなぁ。 あ、初期条件がウマイから、大丈夫か。 質問者 お礼 2010/06/18 23:26 皆様回答ありがとうございました。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) Tacosan ベストアンサー率23% (3656/15482) 2010/06/17 14:02 回答No.1 とりあえず dy/dx を掛けてなんとかならんかなぁ. 質問者 お礼 2010/06/18 23:27 皆様回答ありがとうございました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式の解法 d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 この2階の微分方程式を解けという問題ができません。 dy/dx=z と置いて、1階の微分方程式にして解こうとしたのですが、exp(-x^2)が出てきてしまいました。これは確率積分みたいに積分できるのでしょうか。 回答よろしくお願いします。 2階微分方程式の解法 d^2y/dx^2+2*x*dy/dx=0 境界条件 x=0: y=1、x→∞: y→0 上記の微分方程式をルンゲクッタ法を使って数値的に解きたいのですが、どのように x→∞ : y→0 の境界条件をいれればいいかわかりません。どなたか教えて頂けないでしょうか。回答よろしくお願いします。 微分方程式 (d^2y/dx^2)+2(dy/dx)+y=e^(-x) 条件:x=0のとき、y=0, dy/dx=0 上の微分方程式がどうしても分かりません。 すごく簡単な問題だと思いますが、悩んでいます。 分かる方、教えていただきたいですm(_ _)m 微分方程式の問題 関数y=f(x)が微分方程式 y(d²y/dx²)-(dy/dx)²+y²=0 を満たすとき、この微分方程式の一般解はどうなりますか? 微分方程式について 次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。 微分方程式の解法 こんにちは。微分方程式で分からない問題があります。 y=(dx/dy)x+4(dx/dy)^2 という問題がわからなくて困っています。 自分が微分方程式を解くときは完全にパターンで解いているのですがその中で(dx/dy)^2というものは見たことがありません。 右辺の二項目が「d^2y/dx^2」なら二階微分方程式に当てはめれば解けるのですが、「(dx/dy)^2」と「d^2y/dx^2」は違うものですよね?(まず、違うということが正しいのかが微妙です)では、この場合はどうやって解けばいいのでしょうか。 よろしくお願いいたします。 同次形高階微分方程式について 同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか? 微分方程式について 微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします 微分方程式 dy/dx = f(y/x) の形の微分方程式で y/x = z すなわち y=xz とおき、未知数関数yからzに変換すると dy/dx = z + x(dz/dx)・・・(1) である。 なぜ(1)の式になるのでしょうか? 教えて下さい。 常微分方程式の問題 常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか? 微分方程式の解き方 すいません、以下の微分方程式の解法が分かる方教えて下さい。 宜しくお願いします。 専門外で困っています。 yはxの関数として、 y'' + A*y' = B*exp(-y) A,Bは定数、y'' = d^2y/dx^2, y' = dy/dx 微分方程式の問題が分かりません。 変数係数の微分方程式です。x^3(d^3y/dx^3)-3x^2(dy^2/dx^2)+6x(dy/dx)-6y=2x^4e^x どなたか、回答お願いします。 微分方程式 1,(e^x +4y)dx+(4x-siny)dy = 0 2,(x+y+1)dx+dy=0 このふたつの微分方程式はどう解きますか?? 複雑な微分方程式 常微分方程式: xy・d²y/dx² + (x・dy/dx - 2y)・dy/dx = 0 をz = y・dy/dx とおく以外で解く方法があれば教えてください。 微分方程式の問題です。 嘗ての某大学の入試で出た問題です。 定義域、値域ともに、0から1で、(0,0) (1,1)を含み、その区間で微分可能である関数で、 かつ、逆関数が同じものは?という問題がありました。 dx/dy=dy/dx として、 これを解いて、 (y-c)の2乗 = (x-c)の2乗となり、 条件から、y=xとしました。 しかし、定義域や値域に条件がなければ、 (x-1/2)の2乗 + (y-1/2)の2乗 = 1/2 や、(x-1/2)(y-1/2) = 1/4 も、 条件を満たすので、微分方程式を解く過程で、導出されるはず。 すなわち、解法に穴があるはず。 どこに穴があるかご教示下さい。 微分方程式 x(dy)/(dx)+2y=xという微分方程式を解くのですが、これをxでわると (dy)/(dx)+(2y)/(x)=1となるのはわかるのですが、その後、 z=(y)/(x),y=xz・・(1)として (dy)/(dx)=z+x(dz)/(dx)・・(2) となる(1)から(2)への展開のところがわかりません。 (2)の左辺はyをxで微分しているのがわかるのですが、右辺の意味がわかりません。教えて下さい。 微分方程式の問題(4問)がわからないので教えていた 微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】 微分方程式なんですけど 微分方程式で y' = dy/dx とします。 x*(x - 2*y)*y' = (x^2 + 2*y^2) = 0 が、 y' = - (x^2 + y^2)/x*(x - 2*y) となり、 y' = -(1 - 2*y^2/x^2)/(1 - 2*y/x) y/x = υ とおくと、 y = υx dy/dx = υ + x*dυ/dx ここまでは出切るのですが(間違ってるかも)この先がわかりません。 詳しい計算の方法を教えてください。 よろしくお願いします! 微分方程式 (y+3x)dX+(x+1)dy=0 この微分方程式の一般解を求めたいのですか、(y+3x)dXはyがあるので積分できないし、(x+1)dyはxがあるので積分できないです。どのように解けばいいですか? 微分方程式の問題 dy/dx (dy/dx - y) =x (x - y ) というような微分方程式が解けません。 どのように考えればいいかもわからないです・・ご回答よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
皆様回答ありがとうございました。