• ベストアンサー

フーリエ級数展開の問題

f(x)=x^2をフーリエ級数展開するとき、周期を(-π≦x≦π)としたときと、 (0≦x≦2π)としたときで答えは変わりますか? (-π≦x≦π)のときはx^2は偶関数になりますが、(0≦x≦2π)の場合は偶関数ではないのでその違いによって答えが変わるのでしょうか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

>f(x)=x^2をフーリエ級数展開するとき、周期を(-π≦x≦π)としたときと、 (0≦x≦2π)としたときで答えは変わりますか? 当然、答えは変わります。 >(-π≦x≦π)のときはx^2は偶関数になりますが、(0≦x≦2π)の場合は偶関数ではないのでその違いによって答えが変わるのでしょうか? その違いによっても答えが変わりますし、周期関数の波形そのものが異なれば答えも当然変わります。

ty1048
質問者

お礼

回答ありがとうございます。 おかげですっきりすることが出来ました。

関連するQ&A