締切済み 文字定数を 含む 2次関数の 最大 最小 2013/03/21 10:16 そもそも 何故 グラフに 3本の関数線が 出てくるのか 理解出来ません 軸の方程式って 意味も つかめません すみませんが 説明よろしくお願いします 画像を拡大する みんなの回答 (1) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2013/03/21 21:16 回答No.1 そもそも図がぼやけて読めない。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 定数関数y=kについて 定数関数y=kについて 中学の内容です。 方程式ax+by=cで、 たとえば、a=0,b=1,c=2のとき、 方程式はy=2です。 この方程式では、xがどんな値をとってもyの値はとねに2である。 よって、y=2のグラフは、点(0,2)を通り、x軸に平行な直線になる。 この説明を理解することはできます。でも納得できません。 y=2のグラフは、どうして点(0,2)をとっただけのグラフ、つまり、x軸に平行な直線でないグラフでは間違いなのでしょうか?? 回答よろしくお願いします。 2次関数の最大・最小 2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください 2次関数のグラフ 2次関数のグラフで グラフを書いて頂点と "軸の方程式"を求める 問題があるんですが、 軸の方程式がわかりません。 y=x二乗 y=-x二乗 y=x二乗+2 y=x二乗-2 この4つの 軸の方程式を 教えてください! お願いします! もし余裕があれば 軸の方程式の求め方を 教えてください! よろしくお願いします! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 2次関数の最大・最小について 「正の数aに対し、グラフが3点(0,0),(2,0),(3,-a)を通る2次関数がある。この2次関数の最大値を求めよ。」と言う問題なのですが、2点(0,0),(2,0)を代入して、その得られた式に(3,-a)を代入しaを求めようとしたのですがうまくいきませんでした。どのような方法でとけばいいのでしょうか? 無理関数、、、 無理関数のグラフってどうやって書くんですか?√x-1+3を例にすると、どうすればいいんですか?これは1と3平行移動させるって言うんでしょうけど、どうすれば平行移動したと言えるんですか? あと、無理関数のグラフって何かけばいいですか? 二次関数なら軸の方程式やyの交点や頂点でしたが それと√は1までかかっています 2次関数のことですが グラフがx軸と点(2、0)で接し、点(4,4)を通る2次関数の式 という問題の時 x軸と点(2、0)で接するから頂点の座標は(2、0)です とせつめいされています 全く理解できないです。 なぜ頂点がわかったんですか? こんな質問で申し訳ありません 2次関数の最大・最小問題の場合分けについて 定義域と関数の式が与えられていて、どちらかに文字を含んでいるとき(定義域は固定・グラフが動くときや、定義域が動きグラフが固定されるときについて)、場合分けの方法は2種類ありますよね。 端点のみで最大値・最小値を取る場合は、定義域の真ん中の点と軸との大小関係を考えた場合分け。 端点だけでなく、頂点で最小値・最大値を取る場合は、定義域の端点と軸との大小関係を考えた場合分け。 定義域の端点と軸とを比べる場合はなんとなくわかります。 定義域の真ん中の点と軸とを比べればよいことも、グラフを見れば確かにそうだなぁーとは想います。 ですが、イマイチ納得できないのです。 とくに、定義域の真ん中を考えるという発想がなぜ出てくるのか… 回答よろしくお願いします。 二次関数の最大と最小 今晩は 参考書の説明ではよく分からないので教えてください。 ---------------------------------------------------------------------- 例題: 二次関数y=x^2-2x+2のa≦x≦a+2に於ける最大値を求めよ ---------------------------------------------------------------------- 解説: 下に凸型のグラフでの最大値を求める問題で、区間の両端が決め手となる。 関数をy=f(x)とおくと、f(a)=f(a+2)を満たすaの値が、場合分けの境界値になる y=x^2-2x+2=(x-1)^2+1 xの変域a≦x≦a+2の幅は2で一定 f(x)=x^2-2x+2とおくと f(a)=a^2-2a+2 f(a+2)=a^2+2a+2 f(a)=f(a+2)とすると、a=0 よって、 a<0のとき x=aで最大値a^2-2a+2をとる 0≦aのとき x=a+2で最大値a^2+2a+2をとる ---------------------------------------------------------------------- このようにありました。 ですが、f(a)=f(a+2)とする意味が全然分かりません。 xの範囲の最大値の時の関数と最小値の時の関数、つまり区間の両端を等式で 結ぶことがどうして答えに繋がるのか見当が付きません。 何故区間内の最大値/最小値を求めるときに、区間の最小値の時の関数と最大 値の時の関数を等しくするのですか? 宜敷御願い致します mを定数とする二次関数の問題です mを定数とし、xの二次関数 y=x2乗+2(m-2)x+2m2乗-5m-2 (1)のグラフをCとする。 (1)Cの軸の方程式はx=( )であるから(1)のyが1≦x≦3の範囲においてx=3で最小と なるようなmの範囲は( )である。 (2)Cとx軸が異なる2点で交わるとき、mのとりうる値の範囲は( )であり、mがこの範囲 にあるとき、Cとy軸の交点のy座標の最小値は( )である。 どうぞ、よろしく解答をお願いします。 二次関数の最大値最小値について教えてください。 二次関数の最大値最小値について教えてください。 こんにちは。 私は今高卒認定試験のために数学を独学で頑張っているのですが… 今二次関数をやっていてだんだん分からなくなってきました… 二次関数のグラフで例題がどうしてこうなるのかがさっぱりです。 例題) y=ーx2乗+6x-13 の頂点x座標と頂点y座標の求め方がさっぱりです。 というかx座標の出し方がなぜ x={6÷(ー1)}÷(ー2)=3 なんですか!? yはxの答えを代入で出来るからわかるんですが;; どなたか優しく教えてください>< 関数の最大・最小値 y=|x|e^x (-2≦x≦1) この関数の最大値・最小値を求めるには -2≦x<0と0≦x≦1の場合分けをします。 そこまではいいのですが 解答にはy’=0の形を作る時に-2<x<0の範囲と等号が消去されています。 なぜなのでしょうか? また、このグラフの増減の判断の仕方がわかりません (というか関数全般的に・・・) お願いいたします。 2次関数と似ているグラフについて 数学の2次関数のグラフに興味を持った高校生です。 表現しずらい部分がありますが、お答えいただければ幸いです。 通常の2次関数は y=ax^2+bx+c であらわされ、 上に凸、もしくは下に凸で、軸はy軸に平行になっています。 そこで、右に凸、左に凸で、軸がx軸に平行になっている関数はどのようにあらわすのでしょうか? x=ay^2+by+c と自分では考えました。あっておりますか? また、上下左右に凸という表現ができず、軸がx軸,y軸,にも平行でない関数、すなわち通常の2次関数が傾いたような感じで、軸が1次方程式などである関数はどのような方程式になるのでしょうか? いろいろ考えましたが答えはだせませんでした。 よろしくお願いします。 二次関数の最大最小を教えてください。 今二次関数の最大最小を勉強しているのですが理解できません。 f(x)=(x-1)^2+1 (a<=x<=a-2) の最大値、最小値を求めよ。 という問題の場合わけが理解できません。 テキストには解法が書いてあり、 最大 a<=0のときf(a)= a^2-2a+2 a<aのとき f(a+2)= a^2+2a+2 最小 a<-1のときf(a+2)= a^2+2a+2 -1<=a<=1のときf(1)= 1 1<aのときf(a)= a^2-2a+2 とaのグラフ付きで書いてあるのですが、式だけのっていて日本語での解説がないのでaの場合わけがさーっぱりわかりません。本はこれしか持ってないのでお暇なときにでも教えてください。 2次関数の問題です。 数学マークの問題です。 (1)2次関数 y=x^2‐4x+5のグラフの頂点の座標は (ア,イ)である。 (2)2次関数 y=x^2+2x+10のグラフをx軸方向に2,y軸方向に‐3だけ平行移動して得られるグラフの方程式は y=x^2‐『ウ』x+『エ』である。 (3)2次関数 y=2x^2‐3x‐1のグラフを原点に関して対称移動して得られるグラフの方程式は y=『オカ』x^2‐『キ』x+『ク』である。 (4)2次関数 y=2x^2‐4x+3は、x=『ク』のとき最小値『コ』をとる。 また、2次関数y=‐3x^2‐12x‐20は、 x=『サシ』のとき最大値『スセ』をとる。 という問題がよくわかりません どうか解答お願いします 二次関数の最大値、最小値の問題の場合分けがわかりません。 二次関数の最大値、最小値の問題の場合分けがわかりません。 問題はこれです。 関数y=-x^2+2ax-a^2-2a-1 (-1≦x≦0)の最大値が0となるような定数aの値を求めよ。 解答をみたところ、軸が範囲の左端、範囲内、右端になる場合(つまり、a<-1,-1≦a≦0,0<a)になるそうです。 なぜこうなるのかがまったくわかりません。 平方完成してy=(x-a)^2-2a-1になるところまではわかります。 そこからグラフを書けばいいのでしょうが、 どのように場合分けすればよいのでしょうか。 調べましたが「グラフを書いてから場合分けしよう」となっています。 でも、場合分けの大まかな形がわからない状態でグラフがかけるとは思いません。 グラフをかく方法(=場合分けの方法)を教えてください。 ほかの問題にも活かしたいので、場合分けの方法について簡単に教えてください。 数学には特に疎いのでやさしくお願いします。 三次関数、四次関数の概形について なぜ3次関数、4次関数はあのような形をしているのですか? 1次関数、2次関数は式からグラフの形を想像できるのですが、3次関数や4次関数はそれが出来ません。 yの値が増加から減少(減少から増加)に変わるのはxの値がどういうときなのですか? それともうひとつ疑問があります。 y=(x-a)^n のグラフはy=x^n のグラフをx軸方向にaだけ平行移動したものである。 という文章をよく見るのですが、理屈がよくわかりません。 どうしてそうなるのか教えてください。 y軸方向に平行移動、の理屈は理解できるのですが、x軸方向に平行移動といわれるとイメージが湧きません……。 よろしくお願いします。 2次関数の最大・最小 現在高校1年生で、2次関数を勉強しています。 最大・最小についてよくわからないことがあります。 t≦x≦t+1におけるy=x^2-2x+2の最小値を求めよ。という場合、 y=x^2-2x+2 =(x-1)^2+1 で頂点は(1,1) (ⅰ)t<0 (ⅱ)0≦t≦1 (ⅲ)1<t というふうに場合わけして解くことはわかりました。 ではもしこの問題で、最小値ではなく最大値を求めるときは (ⅰ)t<1/2 (ⅱ)t=1/2 (ⅲ)1/2<t という場合わけであっているのでしょうか? また、グラフが下に凸でなく、上に凸のときの場合わけは 今書いた最小と最大の分け方が逆になるのでしょうか? ここ数日間ずっと考えているのですが、 どんどん混乱していきよくわかりません・・・。 ややこしい説明ですみません; どなたか教えてくださると嬉しいです。 2次関数の式と直線ABの方程式 こんばんは。 下記のような2次関数の問題があるのですが、解くまでの式が分かりません(><)いろいろと調べてみたのですがよく理解することができませんでした。分かる方いらっしゃいましたら御願い致します。 2次関数のグラフ(x軸より上で原点に接している)があり、そのグラフに点A(2,2)と点B(-4,0)を接して通る右上がりの直線ABがあります。 (1)2次関数の式を求めよ。 答)y=1/2x^2 (2)直線ABの方程式を求めよ。 答)y=1/3x+4/3 2次関数の最大・最小 “2次関数y=-X^2+2kX+L (1≦X≦5)の最大値が15、最小値が-3であるように、定数kとLの値を求めよ”という問題がありました。解説ではいきなり、k≦1、1<k≦3、3<k≦5、k>5、と場合わけがされているのですが、3という数字はなぜ出てきたのでしょうか?定義域の端と軸との距離から出てきたのでしょうか?だとすると、3という数字がでてくる理由(計算?)も示されるべきではないのでしょうか? 宜しくお願いします。 二次関数の最大と最小 二次関数の最大と最小 二次関数y=4x^2-2kx+3k-1の最小値をmとするとき、次の問いに答えよ 1)mをkの式で表せ 2)mをkの二次関数とみたとき、mの最大値を求めよ 二次関数y=x^2-2x+k(-1≦x≦2)の最大値が7であるとき、定数kの値を求めよ 詳しく説明お願いします! 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など