- 締切済み
数IIBの問題がわかりません。とても困っています。
p,qを素数、rを1と異なる正の数とする。数列{an}は初項a=-p、公差qの等差数列であり、{an}の初項から第n項までの和をSnとするとき、S12=0を満たす。また、数列{bn}について、b7+b8=10が成り立ち、logr bn = an (n=1,2,3, …)を満たす。 (1) p= □ 、 q= □ である。 (2) Snはn= □ のとき最小値 □ をとる。 (3) r= □ である。 (4) 数列{cn}は等比数列であり、その階差数列が{bn}であるとき、{cn}の初項は □ であり、公比は □ である。 (5) n∑k=1(上にn、下にk=1) ak bk>0 を満たす最小の自然数nは □ である。 以上5問の □ にあてはまる答えの解き方を教えてください。よろしくお願いいたします。
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- yyssaa
- ベストアンサー率50% (747/1465)
回答No.3
- yyssaa
- ベストアンサー率50% (747/1465)
回答No.2
- 09044478858
- ベストアンサー率9% (8/81)
回答No.1
お礼
回答ありがとうございます。大変参考になります。 (5)はbkbkとなっており、問題文にはakとbkの間に何もないようです。kは右下小さいkです。