• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:角速度ベクトルωは、cにdθ/dtを掛けたもの ?)

角速度ベクトルωとは何ですか?

このQ&Aのポイント
  • 角速度ベクトルωは、cにdθ/dtを掛けたものである。
  • 半径rの円に沿ってvの速度で等速回転しているとき、速度の大きさはv=r*(dθ/dt)である。
  • 図7と図8でrが出てくるが、同じものではなく、大きさが異なる。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

1.角速度ベクトルωは,ある軸の周りの回転を表すベクトルで,向きは回転軸,その大きさが回転軸に垂直な半径aの円をとったとき,円上の点の速度がa|ω|になるように定義されます.これをベクトルの外積で図8のように v=ω×r と書くことができます. 大きさ |v|=|ω||r|sinφ(a=|r|sinφ)  向き 回転軸と動径rに垂直 θは図8の円上の回転角であり,|ω|=dθ/dtとなります.これに回転軸の向きをつけると ω=(dθ/dt)*c となります. 2.図7のrに相当するのが図8のrsinφです. 図7は平面上で原点を円の中心にとり,図8では空間内で原点を回転軸上の任意の点にとっているのです.図8で円の中心に原点をとれば図7のようになりますが,空間的にはそうでない場合もあるでしょう.

kakehasi
質問者

お礼

ereserve67さん、ありがとうございます。

その他の回答 (1)

noname#175206
noname#175206
回答No.1

 ベクトルとスカラーが明示されていないので混乱を招く説明になってしまっているのかもしれません。  最初に関係式を出しておくと、v=r×ωです。v(速度), r(半径方向のベクトル), ω(角速度)はベクトルです。×は外積を表す記号です。  これらがスカラー(つまりベクトルの大きさ)としての式にも使われ、その場合は×は単なる掛け算です(普通は文字式では省略して、v=rω)。  二つのベクトルの外積は、ベクトルになり、元の二つのベクトルと垂直の方向を向きます。 >1.ω=(dθ/dt)*cとなるのが分かりません。  v=r*(dθ/dt)を速度の大きさとしているわけですから、全てスカラーです。  ここで、ω=(dθ/dt)*cとしていますね。cは単位ベクトルですね。これが何から出てきているかと言うと、ω, r, vをベクトルとして、円運動での角速度ベクトルの定義、ω=r×ω/r^2からです。  以下、それを使って、ちゃんと3次元成分に分解して、外積の掛け算にしたがって計算すればいいんですけど、省略します。  cが単位ベクトルであることから、ベクトルの大きさが1であるため、rもvもベクトルとすれば、v=r×ωとすることができます。速度(ベクトル)vは、ベクトルrとベクトルω(ベクトルcの向き)と垂直な方向であることは、お分かりいただけるかと思います。きちんとベクトルの外積の通りになっています。 >2.図7と、図8でrが出てきますが、同じものなのですか。  おそらく、まだ続きがあり、最終的にφという角度の意味も説明して、同じものとしたいのだろうと推測します。図7は図8を円がある平面上に射影したもの、ということになるかもしれません。それなら、rの大きさは違ってきそうです。  しかしそれは、この説明が出てきた前後を見て見ないと、うかつなことは言えないように感じます。この部分だけでは、「図8はベクトルの扱いを強調してあるようだ」くらいに思っておいて、とりあえず判断しなくていいかと思います。  ここでの要点は、角度の微分である角速度を、どのようなベクトルとして表現すれば、回転運動する向きの速度ベクトルを表せるかということだろうと思います。

kakehasi
質問者

お礼

cozycube1さん、ありがとうございます。

関連するQ&A