• ベストアンサー

特殊な偏微分の仕方について

y=(1/exp(β))のb乗×(exp(β)/exp(β)+1)のc乗の式を偏微分すると、 dy/dβ=c-(b+c)×(exp(β)/exp(β)+1) のような式になるみたいですが、この偏微分の仕方がよくわかりません。 どなたかわかる方いましたら、どのような方法で偏微分を行っているのか教えてもらえませんか?

質問者が選んだベストアンサー

  • ベストアンサー
  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.2

>y=(1/exp(β))のb乗×(exp(β)/exp(β)+1)のc乗 関数形が正確にはわかりませんが対数微分がよいでしょう。特殊な偏微分なんてものは存在しません。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

何がどう「偏微分」なのかすらよく判らない質問だが、 y を β,b,c の三変数関数と見て β で偏微分の つもりなのだろうか? だとすれば、質問文中の答えは 間違っている。

inmo87
質問者

補足

回答ありがとうございます。 すみません、ご指摘の通り、y=(1/exp(β)+1)のb乗×(exp(β)/exp(β)+1)のc乗の間違いでした・・・