ベストアンサー 全微分 2007/05/09 21:18 y=Y/pという式が全微分(もしかしたら遍微分)で dy/y=dY/Y-dp/p となるらしいんですけど、途中の式を書いてくれないでしょうか? よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ojisan7 ベストアンサー率47% (489/1029) 2007/05/09 21:40 回答No.1 y=Y/pすなわち、 py=Yですから、Y=Y(p,y)として、全微分を計算します。 dY=(∂Y/∂p)dp+(∂Y/∂y)dy dY=ydp+pdy dY/Y=ydp/Y+pdy/Y dY/Y=dp/p+dy/y 質問者 お礼 2007/05/09 21:56 ありがとうございました。 非常に助かりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式を計算過程が分かりません。 yy"+y'^2=1と言う微分方程式を解く。 y'=pと置いて、 y(dp/dy)p+p^2=1・・・・(1) p^2=qと置くと (1/2)y(dq/dy)+q=1・・・・(2) (1)式から(2)式になる過程が分かりません。 この計算過程を教えて下さい。 お願いします。 2階微分方程式について yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください 微分方程式 微分方程式y''-(y')^2/y +y=0の解で初期条件y(0)=1,y'(0)=0を満たすものを y=y(x)とする。以下の問に答えなさい (1)z=logyとおくとき、z=z(x)の満たす微分方程式を求めなさい。 y=e^zとおいて、y''-(y')^2/y +y=0に代入するだけでいいと思います。 (2)yをもとめなさい。 y'=p y''=p・dp/dyとおきます。 dp/dy=p/y-y/p =(p^2-y^2)/gy 同時形を用いて u=p/yとおいて、p'=u'y+u 変数微分法を用いて u'y=-1/u ∫udu=-∫dy 1/2u^2=-logy+C となってさらに続くのですがここからよくわかりません。 そして、この手法はあっているでしょうか?? よろしくお願いしますm(__)m 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式の問題(2階) yy"-(y')^2=y^2logy 解:logy=Ae^(x)+Be^(-x) が解けなくて困っています。 p=y'として、 d^2y/dx^2=dp/dx=dp/dy・dy/dx=p・dp/dy 問題式に代入して、 yp(dp/dy)-p^2=y^2logy.....(1) p(dp/dy)-p^2/y=ylogy......(2)1/yを両辺にかける pとyについてのベルヌーイ形なので u=p^2として du/dy=2p・dp/dy (2)に代入して、 1/2(du/dy)-u/y=ylogy.....(3) 線形微分方程式になるので、 u=exp^(-∫-2/y){∫exp^(-∫-2/y)・(2ylogy)+C}.....(4) これを解いていくと、 u=p^2=y^2{(logy)^2+C}.......(5) p=y√[(logy)^2+C].........(6) とってしまい、以降が解けません。 (解き方自体が間違っているかもしれません) どなたか教えてください。 微分方程式の問題 y'(y'")-(y")^2=0 解:Be^(Ax)+C の解き方なのですが、 y'=P y"=Q とおいて y"=dp/dx=dp/dy・dy/dx=dp/dy・P......(1) y"'=dQ/dx=dQ/dy・dy/dx=dQ/dy・P......(2) (1),(2)を元の式に代入して、 p(p・dQ/dy)-(p・dp/dy)^2=0...(3) dQ/dy-(dp/dy)^2=0..(4) と考えてみたのですが、行き詰ってしまいました。 どなたかアドバイスお願いします 2階微分方程式 yy"+2(y')^2-2yy'=0 の微分方程式を解くとき y'=Pとおき (1) y"=P dP/dy (2) とおく方法がよくわかりません。 (1)をyで微分するとなぜPが残るのかわかりません。 完全微分方程式の問題の解き方 完全微分方程式 次の完全微分方程式を解けと言う問題で (x dx + y dy)/(√(1+x^2+y^2) = 0 ・・・・・(1) これを P(x)dx + Q(y)dy = 0が完全微分方程式なら一般解は ∫P(x)dx - ∫{(∂/∂y)(∫P(x)dx) - Q(y)}dy = C を使おうと、式(1)を (x / (√(1+x^2+y^2))dx + (y / (√(1+x^2+y^2))dy=0 として解こうかと思ったんですが、 途中の計算で式が複雑になりすぎて行き詰ってしまいました。 公式に当てはめる前にもっと式を変形しないと駄目なんでしょうか? もっと他の方法があるんでしょうか? アドバイスお願いします。 非線形微分方程式の問題について 微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。 微分方程式の変形について。 クレローの微分方程式は y=xy’+φ(y’)・・・・・(1) で与えられる。 y’=pとおくと y=xp+φ(p)・・・・・・(2) となる。 両辺を微分すると pdx=pdx+xdp+φ’(p)dp・・・・・(3) (3)式になる。 この(3)式がどうやって出て来たのかわかりません。 微分方程式が解けません。 y-px=2√(1+p^2) ただしp=dy/dx においてxに関して微分することにより微分方程式を解け という問題なんですが、解けません。 式の両辺を2乗したあとどのように解けばいいんでしょうか??教えていただけたら幸いです。お願いします。 微分の途中式の書き方 y=-2x^5 y=(2x^6/3)-(3x^2/2) y=(1x/2)(x^2+3x) まだ習いたてです 途中式はどう書けばいいですか 3つ目のはそのまま展開しないで微分した場合はどうなりますか。 どうやら dy/dx=y´までは、そうしてほしいらしいです。つまりy´だけじゃなくてdy/dxを入れてほしいらしいです それは入れるからいいんですが、まあとにかく途中式の書き方教えていただきたいのですがorz 微分方程式の解き方 1.y" - 2y' + y = x sinxの一般解を求めよ。 この問題で、一つの解の予想の仕方が分かりません。 2.(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3 dy/dx = p、((d^2)y/d(x^2)) = (dp / dy)p とおき、 y^2 * p *(dp /dy)= P^3 y^2 * (dp/dy) = P^2 変数分離をして 1/(p^2) dp = 1/(y^2) dy -(1/p) = -(1/y) + C 1/p = 1/y - C p = y - 1/C p=dy/dx = y + A (A = -1/Cとおく) 1/(y + A) dy = dx log|y + A| = x + B y + A =±e^(B + x) y = Ce^x - A となりましたが 答えはlog|y|=x + C1y + C2です。 間違っているところを指摘していただけるとありがたいです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 困っています>< この証明が全く分からず解けません。もし分かる方がいらっしゃれば、この証明の解説お願いしたいです。 y=実質GDP Y=名目GDP P=物価 y=Y/Pからdy/y=dY/Y-dP/P 全微分をするらしいのですが途中の計算式分かる方いますか? 全微分と偏微分 ある本で次の式が掲載されています。 (dvx/dy)=(δX/δy)(δvx/δX)+(δY/δy)(δvx/δY) ※vx はx方向の速さvを表しています。(xはvの添字) この式は,δXやδYを消すと (dvx/dy)=(δvx/δy)+(δvx/δy)になると思います。 ここで質問です。 vxをyで微分したものを2つ足すとなぜ全微分が出てくるのでしょうか。 v(x,y)だとしたら (dvx)=(δvx/δx)dx+(δvx/δy)dy (dvy)=(δvy/δx)dx+(δvy/δy)dy ※vxはx方向の速さ vyはy方向の速さ このあたりまでは式ができるのですが,よく分かりません。 どなたか御指導をお願いします。 微分でd/dx (xp) = p+x dp/dx 微分方程式 x (d^2 y/dx^2) + dy/dx = x^3 の一般解を求めよう。 dy/dx = p とおくと、微分方程式は次のようになる。 x dp/dx + p = x^3 積の微分により、 d/dx (xp) = p + x dp/dx ← であるから、この微分方程式は次のように変形することができる。 d/dx (xp) = x^3 ・・・と続くのですが、この d/dx (xp) = p + x dp/dx はどうやって求めたのでしょうか? 積の微分というと、 (f*g)' = f'g + fg' ですよね? x dp/dx + p = x^3 にはそもそも掛けている要素が無いことないですか? dy/dx = p と置き換えをしているので、さらにややこしく思えます・・・。 どうか教えてください。お願いします。 微分をわかりやすく説明できる方! x=y^2をyで微分した答えが、なぜdx/dy=2yとなるのかよく理解できません。 サルにでもわかるように説明できる方、お教えいただけないでしょうか! 途中式や公式などを交えて教えて下さい。 微分方程式の問題(4問)がわからないので教えていた 微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】 独占企業の利潤最大化問題 市場の需要関数y=D(p),逆需要関数p=G(y)と表すことにすると、逆需要関数は生産量をyとしたとき、これをすべて売り切ることのできる一番高い価格がG(y)であることを示しています。この独占企業の費用関数をC=C(y)としたとき、この企業の利潤は販売収入pyから生産費用C(y)を引いたものになります。ここでpは生産量yをすべて売り切ることのできる一番高い価格G(y)でなければなりませんから。企業の利潤πはπ=G(y)y-C(y)と表すことができます。独占企業は、この利潤πを最大にするように生産量yを決めることになります。Max(y) π(y)≡G(y)y-C(y) の解のyが独占企業の利潤を最大化する生産量になります。この問題の最適解の1階の条件は、右辺をyで微分して0とおくことです。(dπ/dy)=G(y)+y{dG(y)/dy}-{dC(y)/dy}=0ここからがわからない計算です。 このとき右辺の第2項は、y=D(p)の逆関数がp=G(y)ですから、 {dG(y)/dy}={1/dD(p)/dp}・・・(☆)となります。なぜならy=D(p)とp=G(y)よりそれぞれの微分は、dy={dD(p)/dp}dp,dp={dG(y)/dy}dy・・・(1)となり、これらの式はそれぞれ(dy/dp)={1/(dG(y)/dy)},(dy/dp)=(dD(y)/dp)・・・(2)と変形できゆえに、 dG(y)/dy={1/(dD(p)/dp)}・・・(3)となるからです。本ではこの後、需要の価格弾力性についての解説がつづきます。(1)から(3)に至る計算がわかりません。(1)から(2)の計算は、dy=dD(p)としてこれを代入してみたり、dy/dp={dD(p)/dp}={1/dG(y)/dy}は逆関数の導関数の公式から作れると思いましたが、もう一方の式を導けませんでした。また(2)の後者の式はdD(y)はdD(p)の間違いかと思いました。☆の {dG(y)/dy}={1/dD(p)/dp}が逆関数の導関数の公式を使った計算かどうか、または(1)から(3)に至る計算を教えてくださいお願いします。 ODE > 全微分 全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか? 微分について質問です。 数学IIIでの質問です。 次の式からdy/dxをx及びyを用いて表せ xy=10 という問題なのですが自分は最初、 y=10/xとし dy/dx=10・(-1)/x*2 dy/dx=-10/x*2 これが答えだと思ったのですが回答は 1・y+x・dy/dx=0 dy/dx=-y/x となっています。 これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。 非常に助かりました。