締切済み 微分法 2003/11/30 15:28 aは定数とする。方程式e^x=x+aの異なる実数解の個数を求めよ。 e^x=x+aをa=e^x-xと置き微分してe^x-1としました。この後の考え方を教えて下さい。よろしくお願いします。 みんなの回答 (2) 専門家の回答 みんなの回答 kony0 ベストアンサー率36% (175/474) 2003/11/30 18:53 回答No.2 y=e^x-xとy=aのグラフの交点が何個あるかを考えてはいかがでしょうか? 質問者 お礼 2003/12/02 16:36 アドバイス有難うございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 siegmund ベストアンサー率64% (701/1090) 2003/11/30 15:41 回答No.1 y = e^x と y = x + a の交点(以下,接点も含む意味で使います)が 問題の方程式の解を与えます. したがって,交点の数を調べればよいわけですが, グラフを描くのがベストでしょう. y = e^x のグラフは描けますよね. y = x + a は直線で a の値によって平行移動しますから, 交点の数は a の値によって変化しますね. 質問者 お礼 2003/12/02 16:36 なるほどこの考え方もありますね。参考にさせていただきます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分法の質問です。 微分法の質問です。 問)方程式x^3-3ax+4√2=0(aは定数)について、異なる実数解の個数を調べよ。 どうか解説をお願いします。 数学IIの微分法の応用 解き方教えてください。 方程式x^3-3ax+4√2=0(aは定数)について、 異なる実数解の個数を調べよ。 この問題の解き方を教えてください。 答えはa<2のとき1個 a=2のとき2個 2<aのとき3個 です。 お願いします。 微分の応用問題です 数IIIの微分の応用問題です。 aを定数とするとき、x^4-4x^2=aの異なる実数解の個数を求めなさい。 全く解らないので、よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式 dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。 微分の問題について教えてください 微分の問題について教えてください aを正の定数とし関数f(x)を f(x)=x^3-3a^3x+2a とする 方程式f(x)=0が実数解をただ1つだけもつようなaの値の範囲を求めよ できれば解法と手順をお願いします 数学の方程式に関する応用問題についての質問です xに関する方程式(x^2+2x-2)e^-x+a=0の異なる実数解の個数を求めよ。ただしaは定数で、x^2/e^x→0(x→∞)とする できれば途中式なども詳しく書いていただけると幸いです 超越 例; 3次方程式x3-3x-a=0が異なる3つの実数解をもつような定数aの値の範囲は 容易過ぎ -2<a<2. ●aを実数とする。次の超越方程式の区間[0,1]における実数解の個数を調べよ; x*E^(3*x) - E^(2*x) + (1 + x)*E^x - x - (5/2)*x^2 - x^4=a 左辺の函数 f(x)=x*E^(3*x) - E^(2*x) + (1 + x)*E^x - x - (5/2)*x^2 - x^4 を 微分しf'(x)=_________________, f(0)=0 ,f'(x)>0 (on x∈[0,1]) を示せますか? 示せなければ どうしますか?? 数学II 導関数の応用 aを定数としたとき,3次方程式x^3+x^2-x+a=0の異なる実数解の個数はどのようにして調べるのですか? 微分の問題について教えてください 実数全体において2回微分可能な関数y=y(x)について次の微分方程式を考える。 (*)d^2y/dx^2-2dy/dx-3y=0 (1)y=e^axが上記の常微分方程式(*)の解になるとき実定数aの値を求めよ。 (2)y1(x), y2(x)がともに常微分方程式(*)の解ならば、任意の実定数λ,μに対して λy1(x)+μy2(x)も(*)の解になることを示せ。 (3)y(0)=1, y'(0)=2を満たす(*)の解y(x)を求めよ。 以上の問題の回答についてどうか御教授願います。 定数変化法を用いて解く微分方程式について y''' - 3y'' + 4y' = 0 という微分方程式の一般解を求めよという問題なのですが、 まずy=e^λxとおいてこの式に代入して λ^3 - 3λ^2 + 4 = 0 ⇔(λ+1)(λ-2)^2 = 0 よって特解はλ=-1、λ=2からy=e^(-x),y=e^2x このあと、なのですが参考書では定数変化法を用いてy=a(x)e^2xを代入して求めるとあるのですが、 そこでそうせず、一般解が y = C1e^(-x) + Ne^2xになると考えて Nを定数変化法を用いてN = C2x + C3 であるので一般解は y = C1e^(-x) + (C2x + C3)^2x C1,C2は任意定数 となるという考え方であってるのでしょうか?はたまたこの式だからこういう考え方ができるというだけのでしょうか? 微分方程式 t≧0で,x = x(t) に関する以下の微分方程式 (dx/dt) + (1/τ)x = (1/τ) cost が成り立つとき,以下の問いに答えよ。ただし,定数τは0ではない実数である。 (1) 微分方程式を解きなさい。ただし,x(0)=0とする。 (2) |τ|= 1 のとき,t → ∞ における(1)の解を求めよ。 よろしくお願いします。 微分 (1) x>0のとき、e^x>1+x+x^2/2 を証明せよ。 (2) (1)を用いて、lim(x→∞)e^x/x=∞、lim (x→∞)logx/x=0を証明せよ。 (3) (2)を用いて、次の方程式の異なる実数解の個数を調べよ。(mは定数) (1)e^x=mx (2)logx=mx 解説していただけるとありがたいです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式の問題がわかりません こんにちは、微分方程式の授業でわからない問題があって困ってます、 y''+ay'+by=0(a,bは実数の定数)においてy=(4-2x)e^-xが解である場合、a,bの値を求め、その一般解を求めよという問題です。 最後のページ解答が載っていてa=2、 b=1 y=(c1+c2x)e^-x (c1, c2は任意定数)となっているのですが。過程を是非教えていただきたいと思います。よろしくお願いします。 数学III 微分で、 次の方程式の実数解の個数を求めよ。 e^x-2(X+1)=0 この問題で、途中式(試験などで、ぜひ書かなければいけない計算式)も一緒に教えてください。 微分の問題 方程式x^3-3ax+a=0が異なる3個の実数解を持つとき、定数aの値の範囲を求めよ。 異なる3個の実数解を持つ為の条件が (1)f(x)が極値をもつ(2)極大値と極小値が異符号 というのはわかるのですが、 (1)の条件としてa>0というのがわかりません。 お教えください。 微分法 y=x^3-9x^2+15x-7に対して、点(0、a)から異なる3本の接線を引くことが出来るように、実数aの範囲を求めなさい。 まず上の式を微分してy´=3x^2-18x+15にしました。そして、x=tにおける接線の方程式をたてようと思ったのですが、どのように立てればよいのでしょうか?大変簡単な事を質問していると思いますが、教えて下さい。 方程式を立てた後の解き方は、大体分かります。回答おねがいします。因みに、答えは-7<a<20となっています。 数学の問題です。 aを実数の定数とするxの方程式x^3+(a-1)x^2-a=0・・(※) について次の問いに答えよ。 (1) a=1のとき(※)の解を全て求めよ。 (2) (※)の異なる実数解の個数が1となるようなaの値の範囲をもとめよ。 ※という問題です。 宜しくお願いします。 微分方程式の問題で、もう一問質問です。 微分方程式の問題で、もう一問質問です。 aを実数の定数とする。 条件u(0)=1、u’(0)=aを満たす微分方程式 u”(x)+(1-x^2)u(x)=0 の解u(x)に対して f(x)=u’(x)+xu(x) とおく。 (1)f(0)を求めなさい。 (2)f’(x)-xf(x)=0が成り立つことを示しなさい。 (3)f(x)を求めなさい。 (4)解u(x)がすべてのxに対して正の値をとるものとする。このとき、定数aの値と対応する解u(x)の組を求めなさい。 という問題です。 (1)、(2)、(3)は解けたのですが、(4)の解き方がわかりません。 よろしくお願いします。 複素関数1問と微分方程式2問、続けて質問させていただきました。 ご教授願います。 微分の問題 微分の問題なのですが aを定数として、関数f(x)=2x^3-3ax^2+6(a-1)x+a-4とすると (1)f(x)が極値をもつのはaがどのような条件の時ですか? (2)xについての方程式f(x)=0が異なる3個の実数解を持つのは aがどのような条件のときですか? ちなみに(1)の答えが aキ2になるのですが 私は判別式を使って解いたのですが aキ2はでてきませんでした。 (2)は解答ではa<0,4<aです。 教えて下さい。お願いします。 微分方程式の特殊解 申し訳ありませんが、教えてください。 (d^2y/dx^2)-(dy/dx)=e^x/(1+e^x) という2階の微分方程式で同次方程式の一般解は、 y=A+Be^x (A,Bは定数) となりますが、特殊解の求め方が分かりません。 お分かりになる方、教えてください。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
アドバイス有難うございました。