• 締切済み

解析学

解法を教えてください。 18は解法はわかっていて答えを確認したいので、 答えをお願いします。

みんなの回答

  • muturajcp
  • ベストアンサー率77% (510/657)
回答No.1

18) y=(1-x^{2/3})^{3/2}(sint)^3 ↓ V=∬∫_{x^{2/3}+y^{2/3}+z^{2/3}≦1}dxdydz =2∬_{x^{2/3}+y^{2/3}≦1}[(1-x^{2/3}-y^{2/3})^{3/2}]dxdy =4∫_{-1~1}{∫_{0~(1-x^{2/3})^{3/2}}[(1-x^{2/3}-y^{2/3})^{3/2}]dy}dx =24∫_{0~1}{(1-x^{2/3})^3}{∫_{0~π/2}{(cost)^4}(sint)^2dt}dx =3∫_{0~1}{(1-x^{2/3})^3}{∫_{0~π/2}{(2+cos2t-2cos4t-cos6t)/4}dt}dx =(3π/4)∫_{0~1}{(1-x^{2/3})^3}dx =(3π/4)∫_{0~1}(1-3x^{2/3}+3x^{4/3}-x^2)dx =16π/35 19) x^2+y^2=z^2≦2y 0≦x^2≦2y-y^2 0≦y≦2 z^2≦2y≦4 0≦z≦2 だから x=zsint y=zcost と置ける z≦2cost r=(zsint,zcost,z) r_z=(sint,cost,1) r_t=(zcost,-zsint,0) |r_z×r_t|=|(zsint,zcost,-z)|=z√2 D={(z,t)|0≦z≦2cost,-π/2≦t≦π/2} ↓ S=∫_{x^2+y^2=z^2≦2y,0≦z}dS =∬_{D}|r_z×r_t|dtdz =√2∫_{-π/2~π/2}(∫_{0~2cost}zdz)dt =√2∫_{-π/2~π/2}([(z^2)/2]_{0~2cost})dt =√2∫_{-π/2~π/2}[2(cost)^2]dt =2√2∫_{0~π/2}[1+cos(2t)]dt =2√2[t+(sin2t)/2]_{0~π/2} =π√2

関連するQ&A