単関数Σ[k=1..n]a_k1_E_kが可測⇔E_1,E_2,…,E_kは全て可測
証明問題です。
1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。
[命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。
[問](Ω,B)を可測空間とする。
単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。
f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。
[証]
(必要性)
fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B.
それでE_i∈Bとなる事を示せばいいのだから
fは単関数だからf(E_i)=a_iとなる定義域がある。
よって上記命題を使って,E_i={x∈E;a_i≦f(x)≦a_i}∈Bとなる予定だったのですが
関数値がa_iとなる定義域はE_iだけとは限りませんよね。
各a_1,a_2,…,a_kが全て異なる値なら
個々でE_i={x∈E;a_i≦f(x)≦a_i}∈Bと持って行けて命題が使っておしまいなのですが,
もしかしたら同じ関数値を採る定義域がE_1,E_2,…,E_kの中に複数個あるかもしれませんよね。
(例えばf=(E_i)=f(E_j)=a_i)
その場合,{x∈E;a_i≦f(x)≦a_i}=E_i∪E_jとなってしまい,E_i∪E_j∈Bで
E_i∪E_jが可測集合である事は示せますがE_iひとつだけで可測になる事が示せません。
こういう場合はどうすればE_iだけが可測である事を示せますでしょうか?
お礼
大変わかりやすいご説明誠ににありがとうございました。感謝申し上げます。