三角形 角度が同じ
角度が等しくなる。ことがわからないので質問します。
Oを原点とするxy平面の第1象限にOP1=1を満たす点P1(x1,y1)をとる。このとき、線分OP1とx軸のなす角をθ(0<θ<π/2)とする。点(0,x1)を中心とする半径x1の円と、線分OP1との交点をP2(x2,y2)(x2>0)とする。次に、点(0,x2)を中心とする半径x2の円と線分OP1との交点をP3(x3,y3)(x3>0)とする。以下同様にして、点Pn(xn,yn)(xn>0)(n=1,2,・・・・)を定める。
(1)x2をθを用いて表せ
解答には、添付した画像のような図がのっているのですが、点(0,x1)を点Bとし、点Bから線分OP1におろした垂線の足をHとして、∠OBH=∠P2BH=θになることがわかりません。三角形OP1x1と三角形OBH,三角形P2BHが相似になっているかと思たのですが、相似の条件がわかりません。角がθになる理由は、円周角や接弦定理ではないと思うのです。どなたか∠OBH=∠P2BH=θとなる理由を教えてください。