- 締切済み
図形の問題
弟に高校入試対策の図形の問題を聞かれ、答えられなくて困ってます。 図がないのですが、問題は 「四角形ABCDの辺BC上に適当に点Eをとり、∠EADの二等分線と辺CDとの 交点をFとするとき、AE=BE+DFであることを証明しなさい。」 初めから手が出せなかったのですが、AFの延長線とBCの延長線の交点を仮に Gとすると∠EAG=∠EGAとなり三角形EAGが二等辺三角形になることに気付いて AE=EG=BE+DFを証明すればいいだろうということは思いつきました。 しかしその先がさっぱりです。 もしかすると、初めから考えが間違ってるかもしれないですが、 分かる方は教えてください。お願いします。
- みんなの回答 (2)
- 専門家の回答
補足
すいません。 四角形ABCDではなく正方形ABCDでした。