- 締切済み
領域問題
a,bは|a|+|b|<1を満たす実数とし、 f(x)=x^2+ax+bとする。 (1)領域{(a,b) | |a|+|b|<1}を図示せよ。 (2)f(-1),f(1)の正、負を調べよ。 (3)f(x)=0 が実数解をもつ時、その絶対値は1より小さいことを示せ (1)から分からないのですが、領域{(a,b) | |a|+|b|<1}の意味がわかりません。図示するのはxy座標?ab座標? ちんぷんかんぷんのことを言っているかもしれませんが、問題の意味がわからないので解くことができません。 ab座標上では b<-a+1,b>a-1,b<a+1,b>-a-1 ということなのでしょうか? (2)は f(-1)=1-(a-b) となり、 -1<a-b<1 より f(-1)>0 f(1)=1+a+b となり、 -1<a+b<1 より f(1)>0 (3)は x^2+ax+b=0 解の公式より x={-a±√(a^2-4b)}/2 実数解をもつから、a^2-4b≧0 この後どうすればよいのでしょうか? 教えてください。
- みんなの回答 (2)
- 専門家の回答
お礼
回答ありがとうございます。 判別式≧0、f(1)>0、f(-1)>0、|軸|<1 この部分が重要なのですね。 理解できなかったのでほったらかしにしてしまいました。 本当にすいませんでした。