座標が曲がっているということ
相対論というレベルの問題ではなく、この空間(3次元の直交デカルト座標+時間)を理解する上で座標軸が曲がったものを考えます。どうして曲がっているかというと対象としている具体的な物体の形状が曲がっているからです。場合によっては時間が経過すると形状そのものがヘビのようにグニャグニャと動くことも考えられます。さて、そこに力学の物理法則を導入します。ニュートンの運動方程式(偏微分方程式)みたいなものです。
力学はその導入は通常3次元のデカルト座標によるものだと思います。そこで曲がった空間ではその運動方程式はどうなるのかという問題があります。まず、ベクトル解析の記号を用いて座標系に依存しない形で運動方程式を書き直し、その後、具体的な曲線座標系の諸事情によって式形が決まっていくという図式のようです。例えば、極座標(x=rcosθ,y=rsinθという具体的変換が与えられる)の場合、直交曲線座標(基底ベクトルは場所ごとに変化するが、直交性が成立する)などの性質を使いながら書き下すということになります(演繹する)。
大もとの方程式は座標系に依存しないで書かれている(ということになっている)ので、具体的な座標が式に含まれず、rot, grad, divなどベクトル解析の記号が用いられているわけです。ここで私は全く理解できない壁にぶつかります。rot, grad, divという演算は座標(x,yとかr,θとか)は示されていませんが、定義のうえでは直交デカルト座標(x,y,z)と結びついていると思います。
ベクトルFの発散はdirF=Fx+Fy+Fzということですから、しっかり座標軸と関連しています。だから、rot,grad,divというものを使ってベクトル的に式が展開されていても結局は直交デカルト座標と結びついています。ではそこから曲線座標の運動方程式が”演繹される”のでしょうか。
座標系の分類としては、
一般曲線座標→特殊→直交曲線座標→特殊→直交デカルト座標
ということですね。ですから直交デカルト座標で表示された運動方程式から一般曲線座標での運動方程式を”演繹”によって表示することに違和感を覚えてしまうのです。それともやはり演繹されるものなのでしょうか。
長文になってしまいました。済みません。よろしくお願いします。
お礼
ありがとうございました これを参考になんとかレポートをまとめられそうです