- ベストアンサー
相加平均、相乗平均
a,bがa>0,b>0,(1/a)+(1/b)=1を満たすとき、{(a^2)+1}*{(b^2)+1}の最小値を求めよ。 また、そのときのa,bの値を求める問題で (1/a)+(1/b)=1 a+b=ab …(1) {(a^2)+1}*{(b^2)+1} ={(ab)^2}+{(a+b)^2}-2ab+1 …(1)を代入して 2{(ab)^2}-2ab+1 ab=xとおくと 2(x-(1/2)^2 +(1/2) Xにabを代入して 2(ab-(1/2))^2 +1/2 最小値を求めるから 相加平均、相乗平均が使えそうな感じがします。 a+b≧2√ab より 1/a+1/b≧2√(1/a)(1/b) ab≧4 になりました。 ここまでわかりました。 等号成立は a=b なので代入して 1/a=1/b このあとどのように考えるかわかりません。
- みんなの回答 (11)
- 専門家の回答
質問者が選んだベストアンサー
> どのような言葉を言えばいいのでしょうか? 「なぜ x=4 のときに…が最小になると判断したか」が説明できない時に、という前提でですか? でしたら、 > x=4のとき最小なるからではないのですか? > どのように解説をすればいいのか分かりません。 の2行目だけを書けばよいのではないでしょうか。
その他の回答 (10)
- wps_2005
- ベストアンサー率25% (5/20)
> どのように解説をすればいいのか分かりません。 確かに、文章で説明するのは難しいかもしれません。 試験だったら、解答用紙にグラフを書けば一目瞭然なので、それでOKでしょう。 ここにグラフを載せてもらうことはできないので、このページ上でチェックするのは残念ながら無理かもしれません。 しかし、「なぜ x=4 のときに…が最小になると判断したか」と問われて、 「x=4のとき最小なるから」という答えでは、数学以前のものを疑われてしまいますよ。
補足
どのような言葉を言えばいいのでしょうか? もしよかったら教えてください。
- wps_2005
- ベストアンサー率25% (5/20)
abとxと両方で同じことを書かれていますので、xの方を引用します。 > x≧4 の範囲で、 > 2(x-(1/2))^2 +(1/2) > の最小値を求める問題は > x=4を代入して > 25になりました。 > よって > 最小値は25になりました。 ですから、なぜ x=4 のときに、2(x-(1/2))^2 +(1/2) が最小になると判断したかが問題なのです。ちゃんとわかっているのならいいのですが。
補足
x=4のとき最小なるからではないのですか? どのように解説をすればいいのか分かりません。
- wps_2005
- ベストアンサー率25% (5/20)
追加です。 > a×b≧4 > ですか? の意味がわかりました。 私が書いた「x」をかけ算の記号だと思ったのですね。 「エックス」です。 その直前に書いた「私が#3で書いたような」を見て、No.3の回答を読み返してもらえばわかったはずですが。
補足
ab≧4 より ab=4のときが最小で 最小値は 2(ab-(1/2))^2 +1/2 の式のabに4を代入して 最小値は25になりましたが。 x≧4 の範囲で、 2(x-(1/2))^2 +(1/2) の最小値を求める問題は x=4を代入して 25になりました。 よって 最小値は25になりました。
- wps_2005
- ベストアンサー率25% (5/20)
> a×b≧4 > ですか? 何を確認しようとしているのかわからないのですが。 「ab」は「a×b」を表しているかということなら、当然そのとおりです。 > 2(ab-(1/2))^2+1/2だけをみると > ab=(1/2)のとき最小値は1/2 > > abは最も小さくて4の値をとり得て > ab=4のとき成立するということしかわかりません。 だから、ご自分でも一度やっているとおり、ab=xとおいてみましょう。 問題は、 x≧4 の範囲で、 2(x-(1/2))^2 +(1/2) の最小値を求めよ となりますね。 これは、 y=2(x-(1/2))^2 +(1/2) のグラフが書ければ、どこが最小になるかわかるはずです。 さて、どこまでわかって、どこからわからないのでしょう? 他人にもわかるように表現してみてください。
- wps_2005
- ベストアンサー率25% (5/20)
> 公式通り計算をしたので具体的に、理由はわかりません。 > ただわかるのは > abはもっとも小さくて4の値をとるということしかし> かわかりません。 なるほど。 それでは、正解とはいえませんね。 あくまでもabが最小になる場合を求めただけで、 2(ab-(1/2))^2+1/2が最小になる場合には触れてませんものね。 ここまでわかったということなら、与えられた問題を、私が#3で書いたような単純な問題にすることができたということなのですが、わかります? (「ab」を「x」と書き換えただけです) この x の問題なら解けます?
補足
a×b≧4 ですか? 2(ab-(1/2))^2+1/2だけをみると ab=(1/2)のとき最小値は1/2 abは最も小さくて4の値をとり得て ab=4のとき成立するということしかわかりません。
- wps_2005
- ベストアンサー率25% (5/20)
> ab≧4 > より > ab=4のときが最小で > 最小値は > 2(ab-(1/2))^2 +1/2 > の式のabに4を代入して > > 最小値は25で合ってますか? 合ってるかどうかは、なぜ「ab=4のときが最小」と判断したかによります。 なぜそう判断したのですか? ちなみに、「相加相乗平均の等号条件が成立する値だから」だったらアウトです。
補足
ごめんなさい。 公式通り計算をしたので具体的に、理由はわかりません。 ただわかるのは abはもっとも小さくて4の値をとるということしかしかわかりません。 すいません。
- mister_moonlight
- ベストアンサー率41% (502/1210)
a>0、b>0であるとしても、闇雲に相加平均・相乗平均を使う必要はないでしょう。 (1/a)+(1/b)=1より、a+b=ab=kと置くと、aとbは方程式:t^2-kt+k=0の2つの正の解。 従って、D≧0、2解の和=a+b=k>0、2解の積=ab=k>0。まとめて、k≧4‥‥(1). P={(a^2)+1}*{(b^2)+1}=(ab)^2+(a^2+b^2)+1=2k^2-2k+1=2(k-1/2)^2+1/2.‥‥(2) (2)について、(1)の範囲で考えると、P≧25。この時k=4、即ちa=b=2のとき。
- wps_2005
- ベストアンサー率25% (5/20)
自分で「ここまでわかりました」と書いたところまでで、問題が、 x≧4 の範囲で、 2(x-(1/2))^2 +(1/2) の最小値を求めよ となったことがわかってますか? それがわかっているとしたら、この最小値はどうやったら求まりますか?
補足
ab≧4 より ab=4のときが最小で 最小値は 2(ab-(1/2))^2 +1/2 の式のabに4を代入して 最小値は25で合ってますか?
- take008
- ベストアンサー率46% (58/126)
> 2(ab-(1/2))^2 +1/2 > 最小値を求めるから > 相加平均、相乗平均が使えそうな感じがします。 漠然と「最小値の問題だから」ではなくて,上の式を見て「ab が取り得る値の範囲が必要だから」と意識してほしいですね。 > ab≧4 > になりました。 この段階では,ab≧4 は単なる大小関係を示していて,ab が取り得る値の範囲とはわかっていません。 等号が成立することを確認すると,取り得る値の範囲であるとわかります。 > 等号成立は > a=b > なので代入して > 1/a=1/b 何に代入したのかな? 初めの式に代入すると 1/a+1/a=1 ゆえに a=b=2 のとき等号が成り立つ。 したがって,ab の取り得る値の範囲は ab≧4 である。 ゆえに 2(ab-(1/2))^2 +1/2 は ab=[ ] のとき 最小値[ ]になる。
補足
ab≧4 より ab=4のときが最小で 最小値は 2(ab-(1/2))^2 +1/2 の式のabに4を代入して 最小値は25ですか?
- banbanjump
- ベストアンサー率50% (19/38)
1/a=1/bがわかったなら、 (1/a)+(1/b)=1に代入して aとbを求めればどうですか?
補足
1/a+1/b≧2√(1/a)(1/b) から (1/a)+(1/b)=1を代入をして 1≧2(1/√ab) 両辺を2乗して ab≧4 等号成立から(1/a)=(1/b) (1/a)+(1/b)=1を代入すると (1/a)+(1/a)=1 2/a=1 a=2 同様に b=2 になりました。
お礼
迷惑をおかけして本当にごめんなさい。
補足
ごめんなさい。 どのように解説をすればいいのか分かりません。 もしよかったら教えて頂けませんか?