因数分解の解き方ですが、普通、因数分解の問題に出てくるものは、きれいに整数を使って解けるようになっています。整数にならなくても、簡単な分数です。だから、解けるという前提で考えるのです(簡単に因数分解できなものは、二次方程式の解法とかいうような問題になって出てきて、「因数分解の問題」では出てきません)。
それと、「因数分解」とは何のことなのかを、よく理解されると解けるようになります。因数分解というのは、複雑に見える式を、(簡単な式)X(簡単な式)X(簡単な式)という風に、簡単な式のかけ算に直すことです。この「簡単な式」が、「因数」になるので、因数分解と呼ぶのです。
因数分解の上の説明から、「簡単な式」が、問題の式のなかに、重なって含まれている場合は、それをくくってまとめることができることが分かります。
(x-y)^2-4(x-y)
という式なら、よくよく見ると、(x-y) という式が、二つの ( ) の式のなかに共通してあります。これは、(x-y) でくくってまとめることができるということなのです。つまり、(x-y) は、因数になるということです。
前の (x-y)^2 は、(x-y) をくくって出すと、残るのは、(x-y) になります。また後の -4(x-y) は、やはり (x-y) をくくって出すと、残るのは、-4 になります。だから、答えは、(x-y)(x-y-4) となるのです。
無論、上の計算を暗算でする必要はないのです。式をよく見て、(x-y) でくくれると思えば、(x-y) = A と置いてみてもいいですし、(x-y) をくくると、前の式は、(x-y) が残り、後の式は、-4 が残る。これを足すことになるので、足してみると……で答えが出てきます。
因数分解の一つのテクニックとして、解けないように思える時、数字を式に代入して見るという方法があります。代入してみて、全体がゼロになる場合、この式は、(x-a) という式で因数分解できるのです(a がその代入した数字です)。
例えば、x^3-8 というのを因数分解せよというと困りますが、x=2 を代入してみると、この式はゼロになります。つまり、この式は、(x-2) で因数分解できるということが分かるのです。
(この先は、(x-2)(x^2+?x+?) となり、後の ? は、-2 とかけて -8 になるので、4 だと分かり、(x-2)(x^2+?x+4) となり、ではこの残った ? はということになります。これは、元の式が、x^3-8 ですから、x^2 も x もないので、これらの項がゼロになえうように、?x を決めると、自動的に解けます。少し練習しないと、難しいかも知れませんが、問題に出てくる因数分解は解けるのだというのが原則です。二次方程式を解かないと答えが出てこないような問題は、因数分解の問題としては、普通出てきません)。
お礼
数字を代入して、0になるのは因数だと いうことは、全然、知らなかったです。 もし、試験でつまづいてしまったら この方法を利用させてもらおうと思っています。 裏ワザを教えていただいて ありがとうございました。 また、親切に解答を書いてくださって とってもうれしかったです(⌒-⌒)