- 締切済み
場合の数
0.1.2.3の番号が書かれたカードが2枚ずつ合計8枚ある この中から3枚を選んで0を使わずに3桁の数字を作る方法は何通りあるか? それぞれ一枚ずつ選ぶ場合 3×2×1=6 1.2.3のいずれかがダブる場合 3c2×2=6 これが1.2.3の場合それぞれ考えられるので 6×3=18 和の法則により 18+6=24 この解き方は正解ですか?
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- petertalk
- ベストアンサー率69% (156/225)
回答No.2
合ってます。ただ、少し冗長な感じもしますね。 蛇足になるかもしれませんが、参考までに 他の解き方も2通り書いておきます。 何通りかで解いてみて、 答えを合わせるようにするといいですよ。 【解法1】 各桁の数字が1~3の3通りで、それが3桁あるので、3³通り ただし、3桁とも同じ数字の並びは作れないので、 111,222,333の3通りを除外して、 3³ - 3 = 24通り 【解法2】 百の位と十の位が同じかどうかで場合分けします。 ・百の位と十の位が同じ場合: 百の位の選び方が 3通り 十の位の選び方が 1通り 一の位の選び方が 2通り よって、作れる数字は、3 x 1 x 2 = 6通り ・百の位と十の位が異なる場合: 百の位の選び方が 3通り 十の位の選び方が 2通り 一の位の選び方が 3通り よって、作れる数字は、3 x 2 x 3 = 18通り 和の法則により、合計 6 + 18 = 24通り
- shitumon99
- ベストアンサー率50% (5/10)
回答No.1
正解だと思います