力積について
問題をまず書いてみます。
なめらかな水平面上にx軸、y軸を取り、質量mの小球Aと質量2mの小球Bを用意する。まず、小球Bを原点Oにおき、次に、小球Aをx軸にそって一定の速さvで進ませて、原点Oの小球Bに衝突させた。衝突後、小球Aはx軸と60°をなす向きに速さv/2で進み、小球Bはある速さで水平面上を進んだ。
という問題ですが、この後「衝突後のBの速度とBの進む向き」を求めます。
ここで僕の持っている参考書にこれと同じような問題でベクトルを使った解法が載っています。
というのは、「弾性衝突であるから力学的エネルギーが保存して―(1/2)mv^2=(1/2)m(v_a)^2+1/2m(v_b)^2」(v_aとv_bはそれぞれAとBの速さを表します。もちろんこの例ではBの重さがmになっていたりと若干違いますが...)となる。この式を両辺を2m倍すると、三平方の定理を表す形になり、あとはこの式に従って直角三角形を書けば、角度などの条件により未知数や向きが分かる」というものでした。
ところが上の問題でやるとうまくいきません。まずこれって弾性衝突なんでしょうか?解説には「力積が打ち消され、とか、外からの力積が0」などと書いていますが、まず力積というものが理解できていないようです。上の問題では力積があるように見えますし、力積があると運動エネルギーが失われエネルギーは保存されないと思っていたのですが...
もし分かりにくければまた詳しく説明しますので、アドバイスよろしくお願いします。
ちなみにこのベクトルの方法でなぜか角度までは出ますが、Bの速さだけ√6/4vと間違いになります。正解は√3/4vです。
補足
(1)は立式できたのですが、 sinとcosの計算が複雑で解けません。 (2)は調べても考え方がわかりません。