I=∫[1,√3] arctanx/x^2 dx
t=arctanx、x=tant
と置く。
dx/dt=1/cos^2t,
積分範囲 :[1,√3] ⇒ [π/4,π/3]
I=∫[π/4,π/3] [t/tan^2t]dt/cos^2t=∫[π/4,π/3] [t/sin^2]dt=∫[π/4,π/3]f(t)g'(t)dt
とおいて部分積分を行う。
f(t)=t, g'(t)=1/sin^2t ⇒ f'(t)=1, g(t):以下に求める。
g(t)=∫(1/sin^2)dt
天下りだが
d(cost/sint)dt=-1/sin^2t (実際に微分すればすぐ解る)
よって
g(t)=∫(1/sin^2)dt=-cost/sint
I=∫[π/4,π/3]f(t)g'(t)dt=[f(t)g(t)][π/4,π/3]-∫[π/4,π/3]f'(t)g(t)dt
=[-tcost/sint][π/4,π/3]-∫[π/4,π/3](-cost/sint)dt
=-[π/3(1/2)/(√3/2)-π/4(1/√2)/(1/√2)]+∫[π/4,π/3](cost/sint)dt
=π(9-4√3)/36+J
J=∫[π/4,π/3](cost/sint)dt=∫[π/4,π/3](d(sint)/dt)/sint)dt=∫[π/4,π/3](d(sint)/sint)
=[log(sint)][π/4,π/3]=log[(√3/2)/(1/√2)]=log(√3/√2)=(1/2)log(3/2)
I=π(9-4√3)/36+(1/2)log(3/2)