- ベストアンサー
コンデンサの実際の最大蓄電容量は?
コンデンサ容量について質問です。 太陽誘電 LIC2540R3R8277の 270FのLICを2つ並列に繋いだ状態(計540F)を考えます。 Q=CVより, 540F×3.8V耐圧=2052C=2052A・S=0.57A・h 570mAh ここで,使用する電子回路の電源電圧が3Vとすると 570mAh×3V=1710mWh となりこれが理論上,最大蓄電容量とわかりました。 ここから質問ですが, 実際の最大蓄電容量はこれより下がるようですが,いくら位になるのでしょうか. また,満充電状態から,使える電力量の上限はどれ位になるのでしょうか.
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
「実際の最大蓄電容量」というのが何を意味するのかちょっとわかりません。部品の許容誤差(±20%)分は差が出ますが、”蓄電”できるエネルギー量はほぼ理論値通りだと思います。 ただし、蓄電できたエネルギーを100%取り出せるかというと、そうではない、という話になります。電池ではなくキャパシタですので、放電すると電圧はどんどん降下していきます。電圧のレギュレーション等をせずそのまま使うと仮定すると、電圧が3Vに降下した時点で回路が動作しなくなります。(ある程度の電圧マージンはあると思いますがここでは無視します。) Q=CVの式から、電圧はエネルギー量に比例して降下しますので、3÷3.8≒79%、つまり電荷残量が79%になった時点で電圧が3V以下になってしまいます。つまり、取り出せるエネルギーは貯めたエネルギーのうち21%だけ、ということになります。 キャパシタに蓄電したエネルギーをより多く使用するためには、電圧が3V以下になっても動作するように昇圧インバーターなどを使用して電圧を安定化するか、電子回路全体を1.8V系で動作するようにするなどの工夫をする必要があります。 もう一つ、「最低使用電圧」という制限があります。カタログには「2.2V以下まで放電しないこと」と記載されています。ということは仕様上、2.2÷3.8≒58%(=990mWh)までしかエネルギーを取り出せない、ということになります。これが「実際に使用できるエネルギー量」ということになるかと思います。 ※以上は放電特性がリニアである、という前提で話をしてきました。放電特性を探してみたのですが見つからなかったので。もし、リニアでなければ上記の前提は崩れます。
その他の回答 (2)
お店で売っているコンデンサの個体差はすごく大きいですよ。 表示されている容量に対して、1割、2割は平気で違います。
- mdmp2
- ベストアンサー率55% (438/787)
充電したコンデンサに抵抗R を接続したときの電圧の変化は、 V(t)=Vo*exp(-t/CR) Vo は、充電したコンデンサの端子電圧です。(3.8V 耐圧のコンデンサですから、最大3.8V) 電子回路の電源電圧の下限が3V で、3.8Vでも問題なく動作するものとし、かつ、電子回路に流れる電流が印加電圧に比例する(抵抗値が一定)とすると、上記の式で、3.8Vから3Vまで降下するまでの時間T を計算することができます。 この時間に取り出せる電力は、R×V(t) のt=0からTまでの定積分として計算できると思います。 なお、「570mAh×3V=1710mWh となりこれが理論上,最大蓄電容量」ではありません。電圧が時間とともに低下するからです。
お礼
詳細な回答ありがとうございます。 とても参考になりました。