Σ[n=1..∞]1/n^4=π^4/90を求める際,どの正規直交関数系を使えばいいのかの選択基準は?
こんにちは。
[問]f(x)=x^2(x∈[-π,π])のフーリエ級数を求め,それを使ってΣ[n=1..∞]1/n^4=π^4/90を示せ。
[解]
f(x)(=x^2)π^2/3+4Σ[k=1..∞](-1)^kcos(kx)/k^2=π^2/3-4cosx+cos(2x)-4/9cos(3x)+…
これを正規直交関数{u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…}を使って書き直すと
1/√(2π)・√(2π)・π^2/3+cosx/√π(-4√π)+sinx/√x・0+cos(2x)/√π・1+sin(2x)/√π・0+cos(3x)/√π・(-4√π/9)+… …(1)
従って,a_0=√(2π)/3,a_1=-4√π,a_4=0,a_5=-4√π/9,…
従って(1)は
Σ[k=0..∞]a_k^2=a_0^2+a_1^2+a_3^2+a_5^2+…=2π^5/9+16π+π+16π/81+…=2π^5/9+16Σ[k=1..∞]1/k^4 …(2)
一方,∥f(x)∥^2=∫[π..-π](f(x))^2dx=∫[-π..π]x^4dx=2π^5/5 …(3)
(2)と(3)をParsevalの等式「∥f(x)∥^2=Σ[k=0..∞]a_k^2」に代入して2π^5/5=2π^5/9+16πΣ[k=1..∞]1/k^4
∴Σ[n=1..∞]1/n^4=π^4/90
の問題についてですが正規直交関数は色々あると思いますがこの問題では特に
{u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…}
を使えばいい事とどのようにして知る得るのでしょうか?