- 締切済み
座標の問題についてです。
aを正の定数とする。放物線P:y=ax^2上の動点Aが放物線P上のすべての点を動くとき、座標平面上でy>0の表す領域において、どの円Cの内部にも含まれない点がある。この点の集まりを図示せよ。 答えは(0,1/4a)を中心とする半径1/4aの円内部(境界含み、原点を除く) ですが、なぜ境界を含むのか分かりません。 A(t,at^2) とすると,Cは (x-t)^2+(y-at^2)=(at^2)^2 x^2-2tx+t^2+y^2-2at^2y+(at^2)^2=(at^2)^2 (1-2ay)t^2-2xt+x^2+y^2=0 どのCの内部にも含まれない(x,y)は すべてのtについて,(1-2ay)t^2-2xt+x^2+y^2≧0・・・(1) (1)の x^2-(1-2ay)(x^2+y^2)という判別式で 虚数解の時は実数tが存在しませんが、重解の時も実数tが存在しないのはなぜでしょう? (ここで重解となると実数tが存在しないとなるため、答えに境界を含むとなっている訳ですが…) 詳しく教えていただきたいです。 よろしくお願い致します
- みんなの回答 (2)
- 専門家の回答
補足
説明不足でした。すみません。 円Cは点Aを中心とし、x軸に接する円です。 よろしくお願いします。