- 締切済み
複素平面での解析関数に対する要件
複素平面での解析関数に求められる要件は名称で言うならコーシーリーマンの関係式です。それとイコールの意味での要件は、微分が方向に依らない(ガウス平面上の点に近づく全方向で微分が同じ値を取る)ということです。(この理解が間違ってるかも知れませんが) 私は、後者(微分が方向に依らない)から前者(コーシーリーマンの関係式)が誘導できないかなあと思っています。どうでしょうか。 実数の2次元平面(x,y)においてf(x,y)の任意の方向(n方向)の微分は、n・grad(f)となります。ベクトル解析における方向微分です。これを複素平面(ガウス平面)に適用してその値がnベクトルの成分に依存しないで一定である(すなわち方向微分の値が方向に依存しない)という要件から誘導できるのではないかと思いましたが、ハズレのようです。考え方が間違っているでしょうか。 なお、ガウス平面でのfのgrad(勾配)は、(df/dx, df/(d(iy))としていますが。 ※ガウス平面上の微分からコーシーリーマンの関係の誘導する過程は理解しました。微分値が(Δx, iΔy)に依存しないので方向に依存しないということだと思います。 以上、よろしくお願いします。
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.3
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.2
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.1
お礼
その次の悩みにお付き合い願います。 実空間の場合、df/dn=n・gradf=|n||gradf|cosθ=|gradf|cosθがθに依存しないためには|gradf|=0となり、fx=fy=0となるのではないでしょうか。これの複素数版ですよね...。