締切済み 0°≦θ≦180°のとき、次の等式を満たすθを求め 2013/10/06 09:50 よ。 (1)sinθ=1/√2(2)cosθ=-√3/2 画像の(1)のOQ,OR,OP,OSの決まり方はなんですか?画像の(2)のOP,TPの決まり方はなんですか? 画像を拡大する みんなの回答 (1) 専門家の回答 みんなの回答 soixante ベストアンサー率32% (401/1245) 2013/10/06 10:19 回答No.1 半径1の円周上ですよね。 だから、OP=1, OQ=1 はいいですね? R、Sの点が見えませんが、 点Pからx軸に下した垂線とx軸が交わる点を R 点Qからx軸に下した垂線とx軸が交わる点を S だと仮定して話を進めます。 (1)ORの決まり方。 sinΘ=1/√2 だといってます。 sinΘ=PR/OP=1/√2 です。 OPの実際の長さは1ですから、これをもとに、PRの長さを出せば、PR=1√2 △OPRは直角三角形なので、三平方の定理で、ORの長さも出ます。同じ1/√2 Sも同じです。 結局、90°、45°、45°の二等辺直角三角形のパターンで、三平方の時に習った、 1:1:√2 をベースに考えています。 (2) 点Pからx軸に下した垂線とx軸が交わる点を Tと考えて進めます。 △OPTも角Tが直角の直角三角形です。 三平方の定理で、90°、60°、30°のパターンのやつを習ったと思います。 斜辺が2、その他が1と√3のやつです。 今回は斜辺にあたる部分(OP)が1なので、|OT|=3/√2 になります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 0°≦θ≦180°のとき、次の等式を満たすθを求め よ。 (3)tanθ=ー1/√3 画像の(3)のOP,OQ,QPの決まり方はなんですか? 領域と、ベクトルの問題です Oを中心とし、 半径が1と2の 同心円C1、C2がある。 点Q、RがOQとORのなす角を30゜に保つように C1の周上を動くとする。 PがC2の周上を動くとき、 ベクトルOP・ベクトルOQ+ベクトルOP・ベクトルOR の最大値、そのときのベクトルOPとベクトルOQのなす角θを求める問題です。 途中まで、やってみました。 ベクトルOP・ベクトルOQ+ベクトルOP・ベクトルORの式は ベクトルの内積をとって 2cosθ+2cos(30゜+θ)…(1) と変形できて、 (1)を2でくくって 2{cosθ+cos(30゜+θ)}となり、 和積公式をもちいて 4cos(15゜+θ)cos15゜ と変形しました。 ここからどうやれば 最大値、そのときのベクトルOPとベクトルOQのなす角θを導けるのか 教えてください 平面上のベクトルの問題 「平面上の4点O、P、Q、Rが条件OP=2、OQ=3、∠POQ=60°、OP→+OQ→+OR→=0を満たすとする。線分ORの長さとcos∠PORの値を求めよ」 という問題を解いています。 図で表そうと思ったのですが、OP→+OQ→+OR→=0があらわしているものがわからなく、困っています。 回答していただけるとありがたいです。よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトル 回転 なす角 座標空間の原点をOとし、点Q(cosα、0、sinα)|α|<π/4が与えられている。長さ1のベクトルOPはz軸の正の方向と角π/4を保ちながら一定の速さで回転し、時間2πで1まわりしている。点Pが1回転する間に2つのベクトルOPとOQのなす角がπ/2より小さくなる時間の長さは4π/3である。このとき点Qの座標を求めよ。 この問題を解いているのですが、Pの座標を(cosβ、sinβ、1/√2)とおけるでしょうか? 「2つのベクトルOPとOQのなす角がπ/2より小さくなる時間の長さは4π/3である」 というのはcosθ=ベクトルOP・OQで、β=4π/3のときにcosθ<0 ということなのでしょうか? このようにやってみても、Qの座標が出てこなくて困っています。 回答いただければありがたいです。 よろしくお願いします |OP→|=2、 |OQ→|=√3、OP→・OQ=3とするとき |OP→|=2、 |OQ→|=√3、OP→・OQ=3とするとき (1)ベクトルOP→、OQ→のなす角をもとめよ。 (2)三角形OPQの面積Sを求めよ。 (1)はとけました。。 Cosα=OP・OQ / |OP||OQ| この公式に代入して、なす角をもとめました。 そしたら、答えは√3/2となったので、答えは30度だとおもいました。 ただ、(2)がとけませんでした。 S=1/2OP・OQSIn30° と式を作ってみたのですけど、答えがまちがってました。 Sin30度の部分がまちがえてるのでしょうか? なす角として求めたので(1)で、 SinA≠30度でしょうか?? どなたか詳しくおしえてください。(2)について。 宜しくおねがいします>_< 次の方程式、不等式を解け。ただし・・・・ 次の方程式、不等式を解け。ただし、0≦θ≦2πとする。 (1)2sin^2θ-5cosθ+1=0 (2)tan(2θ+π/4)=1 (3)cos2θ>3-5sinθ (4)sin2θ<sinθ 三角方程式、三角不等式分からないです。。 0°≦θ≦180°のとき、次の方程式、不等式を解け 0°≦θ≦180°のとき、次の方程式、不等式を解け。 (1)2sinθ-1=0 (2)√2cosθ+1=0 (3)3tanθ=√3 (4)cosθ<1/2 (5)1/√2≦sinθ<√3/2 (6)-1<√3tanθ<3 分かる方、お願いします! 2002年センター試験追試 数学IIの三角関数 いつも大変お世話になっております。 2002年センター試験追試 数学IIの三角関数に関する問題で、 私の持っている問題集で、別解として記載してある内容なのですが、 どうしても理解できないところがあります。 問題 aは-2≦a≦2を満たす定数。 2つの角x,yは、 cos(x)-cos(y)=a を満たしながら、 0≦x≦π,0≦y≦πの範囲を動く。 このとき、s=sin(x)+sin(y)の最大値を求めよ。 解答 y=-Yとおくと、 cos(y)=cos(-y)=cosY sin(y)=sin(-Y)=-sin(Y) となるので、改めて条件を示すと 0≦x≦π,-π≦Y≦0 cos(x)-cos(Y)=a sin(x)-sin(Y)=s ベクトルOP=(cos(x),sin(x)) ベクトルOQ=(cos(Y),sin(Y)) とおく。 cos(x)-cos(y)=aという条件のもとにsを最大にするには ベクトルOQ=-ベクトルOP となるようにすればよい。 ・・・ とあるのですが、「cos(x)-cos(y)=aという条件のもとにsを最大にするには ベクトルOQ=-ベクトルOPとなるようにすればよい。」 の箇所がどうしても理解できておりません。 お忙しいとは思いますが、アドバイスいただけると助かります。 不等式を解け (2+√3)sinθ+(1+√3)cosθ≧|sinθ| 色々やって cosθ≧0かつcosθ≧-sinθ または cosθ<0かつcosθ≧-sinθ/√3 というのがわかったのですがcosθ≧-sinθやcosθ≧-sinθ/√3をどうやって解くのかがわかりません 教えてください 不等式の問題です cos3θ+sin2θ+cosθ>0を解け(ただし0≦θ<2π) cos2θ=cos^2θ-sin^2θ cos3θ=cos^3θ-3sin^2θcosθ cos^2θ-sin^2θ+cos^3θ-3sin^2θcosθ+cosθ>0を整理して -2cosθ(2sinθ+1)(sinθ-1)>0 これを解きたいのですがcosθ、(2sinθ+1)、(sinθ-1)の順に-、+、+と+、+、-と+、-、+と-、-、-それぞれの条件を出すのは大変なのでよい方法はないでしょうか? 不等式 こんにちは! 不等式で分からないところがあります…。 sinθ<√3cosθという問題なんですが、 この場合√3cosθを移項したらいいんですか? 移項したらsinθ・√3cosθ>0になるんでしょうか…? 問題の考え方が分かりません; 解説お願いします!! 三角関数の不等式 0≦θ<2πのときsinθ+sin2θ+sin3θ>0を解け 三倍角の公式でsinθ+sin2θ+sin3θ=sinθ+2sinθcosθ+3sinθ-4sin^3θ=4sinθ+2sinθcosθ-4sin^3θ=sinθ(4+2cosθ-4sin^2θ)=sinθ(2cosθ+4cos^2θ)=sin2θ(2cosθ+1) これが正になるのはsin2θと2cosθ+1の符合が同じになったとき ここからがわからないので教えてください 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 不等式 わからないんです。 教えてください。 sinθ<tanθ 0≦θ≦2π の不等式を解きなさい。 って問題です。 sinθ<sinθ/cosθ・・・というのは間違ってますか。 三角関数の不等式が解けません (2+√3)Sinθ+(1+√3)Cosθ≧Sinθ の不等式をとく (1)0≦θ≦πのとき (2)π<θ<2πのとき (1)は以下であってますか? 0≦θ≦πのなので、Sinθ≧0 なので、(2+√3)Sinθ+(1+√3)Cosθ≧Sinθ 移項して、2Sinθ+√3Sinθ-Sinθ+(1+√3)Cosθ≧0 (1+√3)Sinθ+(1+√3)Cosθ≧0 (1+√3)(Sinθ+Cosθ)≧0 (Sinθ+Cosθ)≧0 です 単位円のグラフを考えて0≦θ≦(3/4)π・・・であってますよね? (2)が、キレイな数字にならないのですが・・・解き方を教えていただけますでしょうか? 合成できない・・・。 三角不等式の範囲の求め方 いつも質問してます(^^ゞ。 よろしくお願いします。 ある三角不等式 2sinθcosθ<sinθから、 sinθ>0, 2cosθ-1<0 またはsinθ<0, 2cosθ-1>0 →ここまではわかるのですが、これが 60°<θ<180°, 300°<θ<360° の不等号の向きがわかりません。 ↓ここまではわかるのですが、 sinθ>0, sinθ=0°,180° 2cosθ-1<0, cosθ=60°,300° 60°<θ<180°, 300°<θ<360° の求め方教えて頂けると助かります。 次の三角関数の不等式の証明を教えて下さい。 π<θ<2πの時、2sinθ(1-cosθ)>=-4 証明を教えて下さい。よろしくお願いします。 三角関数の不等式(2) つぎの問題教えてください。 問い、次の値を求めよ。 (1)sin20°+sin140°+sin260° 解答 =sin140°(2cos120°+1)=0 (2)cos10°+cos110°+cos130° 解答 =cos50°+cos(150°-50°)=0 両問ともなんで途中式から0になるのか知りたいです。 そこだけで結構です。 よろしくお願いします。 だ円の周上に二点P.Qを∠POQ=90°のように取る時。。>_<? だ円x^2/a^2 + y^2/b^2=1の周上に二点P.Qを∠POQ=90°のように取る時、 1/OP + 1/OQ のとりうる最大値、最小値を求めよ! この問題わかりません>_<!!!!! 解答を見ると OP=p,OQ=qとする、p>0,q>0なので (1/p+1/q)^2 = 1/p^2+1/q^2+2/pq =1/a^2+1/b^2+2/pq よって、1/pqの最大、最小を考えればよい. (質問)上の式はどうやって作れるのですか?ゼンゼン解りません>_<!!あとどうして上の式をみて、1/pqの最大と、最小を考えればよいのですか? ->解答続き 1/(p^2q^2) = 1/(a^4b^4){a^2sin^2Θ+b^2cos^2Θ)(b^2sin^2Θ+a^2cos^2Θ) =1/(a^4b^4){(a^4+b^4)sin^2Θcos^2Θ+a^2b^2(sin^4Θ+cos^4Θ)} <質問2>上の式は何かの式に何かを代入したらこんなに長い式が出来上がったのですか!?? ー>解答続き ここで、sin^4Θ+cos^4Θ=(sin^2Θ+cos^2Θ)^2-2sin^2Θcos^2Θ=1-2sin^2Θcos^2Θを用いて 1/(p^2q^2) =1/(a^4b^4) {a^2b^2+(a^2-b^2)^2sin^2cos^2Θ} =1/(a^4b^4) {a^2b^2+(a^2-b^2)^2/4 sin^22Θ} <質問>sin^4Θ+cos^4Θ=って何ですか?!~を用いてって書いてありますけど、何の事か解りません。 ->続き この式は、sin2Θ=0のとき最小、sin2Θ=1のとき最大となる。その時の値はそれぞれ、 1/(p^2q^2) =1/(a^2b^2), 1/(p^2q^2)=(a^2+b^2)^2/(4a^4b^4) よって、求める最小値は a+b/ab , 最大値は√(2(1/a^2 + 1/b^2) <質問>sin^2Θ=0の時最小と、あと~最大となるって書いてありますけど、意味が解りません。 だれかこの問題教えてください>_<!!! 三角関数の不等式 やり方がイマイチ分かりません・・・ 以下の問題を例に教えてくださいm(_ _)m (1)sinθ<√3(cosθ+1) (2)sin^2θ+sinθcosθ+2cos^2θ>2 お願いします!! 不等式の性質 不等式の同値関係がわからないので、質問します。 座標平面上で原点Oから出る半直線の上に2点P,Qがあり、OP・OQ=2を満たしている。 問、点P,Qの座標をそれぞれ(x,y)、(X,Y)とするとき、x,yをX,Yであらわせ。 点P(x,y),点Q(X,Y)がともに原点からでる半直線上にあるから、xX≧0,yY≧0・・・(1) OP・OQ=2を満たすとき、OP^2・OQ^2=4であるから (x^2+y^2)(X^2+Y^2)=4・・・(2) ここでわからなくなりました。x≠0のとき、X≠0 と解説には書いてあるのですが、 x=1,2,3・・・のときでも、X=0ならxX=0となり、xX≧0が成立すると思いました。 解説では、半直線OP,OQの傾きが等しいからy/x=Y/Xよって y=(Y/X)xこれを(2)に代入して、 xとXは同符号、x=0のときX=0、 yY≧0 などの条件に注意して、 x=2X/(X^2+Y^2),y=2Y/(X^2+Y^2)と答えを出しています。 どなたかxX≧0,yY≧0 ならば、x≠0のとき、X≠0となることを説明してください。お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など