ベストアンサー Σ[n=1~∞]x/(1+x^2)^n 2013/04/14 19:13 Σ[n=1~∞]x/(1+x^2)^nが x ≠ 0 のとき S = xr/(1-r) = 1/x となるのは何故ですか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー spring135 ベストアンサー率44% (1487/3332) 2013/04/14 20:24 回答No.1 これは公比1/(1+x^2)の等比級数です。 従ってそのn項までの和Snは初項をaとして Sn=Σ[i=1~n]x/(1+x^2)^i=a[1-(1/(1+x^2))^(n+1)]/[1-(1/(1+x^2)] =a[1-(1/(1+x^2))^(n+1)](1+x^2)/x^2 a=x/(1+x^2)なので Sn=[1-(1/(1+x^2))^(n+1)]/x 従って Σ[n=1~∞]x/(1+x^2)^n=lim(n→∞)Sn=1/x 質問者 お礼 2013/04/14 20:48 分かりました ありがとうございました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) alice_44 ベストアンサー率44% (2109/4759) 2013/04/15 03:12 回答No.2 同じ質問の前回投稿への回答に、 Σ の中身が x(rのn乗) になることを示して、 「等比級数です」と書いた上で = xr/(1-r) としておいたのに、 等比級数が何者だか、自分で調べなかったの? その姿勢は、ちょっとよくないよ。 質問者 お礼 2013/04/17 18:14 すみません 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A Σ{n=0~∞} ((x^2^n)/(1-x^(2 Σ{n=0~∞} ((x^2^n)/(1-x^2^(n+1)) ただし-1<x<1 を求めよという問題なのですが (x^2^n)/(1-x^(2n+1) =(1/(1-x^2^n)-1/(1+x^2^n))/2 とぶんかいできるので Σ{n=0~∞} (1/(1-x^2^n)-1/(1+x^2^n))/2 と置き換えられる 1/(1-x^2^n)=1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) とも置き換えられるので Σ{n=0~∞} (1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) -1/(1+x^2^n))/2 1/(1+x^2^(n-1)) -1/(1+x^2^n)はn=0~∞なので0 (ここが自信ないです) Σ{n=0~∞} (1/(1-x^2^(n-1)) は発散する ( 1/(1-x^2^(n-1)>1 なので) 間違えてるところがあったら指摘お願いします lim(n→∞) Σ(k=1,n) n*(5/6)^n lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。 R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1]) R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム Σ{n=0~∞} (x^n)((x-1)^2... Σ{n=0~∞} (x^n)((x-1)^2n) /n! …(1) ってどういう風に考えたら e^x(x-1)^2とおけるのでしょうか? テーラー展開の考え方を使うというのはわかるのですが e^x(x-1)^2ってテーラー展開したら Σ{n=0~∞} (x^n)((x-1)^2n) /n! なりますか? テーラー展開は最近知ったばかりでよくわかりませんが、 f(x)=f(a)+f'(a)x/1!+f''(a)(x^2)/2!+f'''(a)(x^3)/3!+... …(2) という式はしってます。 (証明とかはわかりませんが、基本的なsinxとかのテーラー展開はできます) よくわからないのが、(1)式だと、分母がn!のときに分子のxが3n乗になってしまうのがよくわかりません。(2)式のとおり行く分母がn!のときに分子のxがn乗以外にはならない気がするのですが。。。 それともこれはF(x(x-1))=e^x(x-1)^2としてΣ{n=0~∞} ((x(x-1)^2)^n) /n!と考えるのでしょうか? 数列{a_n}、{b_n}が、a_n=s^n, b_n=r^n(n=1 数列{a_n}、{b_n}が、a_n=s^n, b_n=r^n(n=1,2,3,,) 0<s<r<1 で与えられている時、 Σ∞_(n=1) a_(n)b_(n) = 1/3 , Σ∞_(n=1) a_(n)/b_(n) = 3 を満たすとする。この時、s+rの値を求めよ x*(x+1) = n(n+1)の解 x*(x+1) = n(n+1)の解 x=nもしくはx=-(n+1)が解となるそうですが、実際にはどう解くのでしょうか? 自分で考えたのは両辺の因子の対応付けをして 1) x=n, x+1=n+1 2) x=-n, x+1=-(n+1) 3) x=n+1, x+1=n 4) x=-(n+1), x+1=-n の4通りを考え、左と右の式が成り立つのは1.と4.の場合だけ、というのですが、 あまりすっきりとした解き方ではありません。 2次方程式の解の公式も使おうとしましたが、虚数が出てしまいうまく導出できませんでした。 もっと簡単な解き方についてご教授よろしくお願いいたします。 ∪{An:n∈N}を求めよ。 ∪{An:n∈N}を求めよ。 問題の回答について、よろしくお願いします。 命題pnを”-nより小さい”、命題qnを"nより大きい"と定め、Rの部分集合An={x∈R:(pn∨qn)(x)が真である}とおくとき、つぎの問いに答えよ。 (1) ∪{An:n∈N}を求めよ。 (2) ∩{An:n∈N}を求めよ。 という問いについて考えてみました。 もしかしたら、全く的はずれな箇所もあるかと思い、テスト問題における解答の書き方として修正および補足を回答いただければと思います。 証明の仕方が自信ないです。 (1) A1={x∈R:(-1>x)∨(1<x)} An={x∈R:(-n>x)∨(n<x)} -1≦x≦1のとき、xはいずれのAnにも属さないことになる。 A1∪A2∪・・∪An=A1 ∪{An:n∈N}= A1 ={x∈R:(-1>x)∨(1<x)} (2) n∈Nを十分大きく取れば|x|<nとできる。 A1∩A2∩・・∩An=An lim an(n→∞)=∞ であるから, ∩{An:n∈N}= 空集合 (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (2)(2-x)/(1-x-x^2)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (3)(x^2)/(1-x-x^2-x^3)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 できるだけ、詳しく教えてください。お願いします。 n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a^1)^2+・・・+(a^n+1)^2=1}が可微分多様体の構造をもつことを示せ。 という問題で、証明の中でいくつかわからないところがあります。わからない部分を≪≫で書きます。 証明)Vi^+={(a^1,・・・,a^n+1)∈S^n|ai<0} Vi^-={(a^1,・・・,a^n+1)∈S^n|ai>0} (i=1,・・・,n+1) とおくと ≪これらはS^nの開集合でありS^nを覆っている。≫←この部分は当たり前に言えてしまうのでしょうか? ≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫←何故、同相であることを示すのでしょうか? 写像φi:Vi^+→E^n φi^-1:E^n→Vi^+を実際に移していく。 この後は何とかわかるのですが最初の方の疑問をどなたかお願いします。 Σ[n=1~∞]x/(1+x^2)^n Σ[n=1~∞]x/(1+x^2)^nが何になるのか求める方法教えてください x^n+(1/x^n)をθで表す問題です。 x+(1/x)=2cosθの時、x^n+(1/x^n)をθで表す問題です。 n=1の時、x+(1/x)=2cosθ n=2の時、x^2+(1/x^2)={x+(1/x)}^2-2=(2cosθ)^2-2=4(cosθ)^2-2 n=3の時、x^3+(1/x^3)={x+(1/x)}^3-3{x+(1/x)}=(2cosθ)^3-3*2cosθ=8(cosθ)^3-6cosθ n=4の時、x^4+(1/x^4)={x+(1/x)}^4-4{x+(1/x)}^2+2=(2cosθ)^4-4(2cosθ)^2+2=16(cosθ)^4-16(cosθ)^2+2 と考えてみると、x^n+(1/x^n)の第1項は2^n*(cosθ)^nと表せそうですが、その他の項をnで表すことができないでおります。 どのように考えていけばよろしいのでしょうか?アドバイスの程宜しくお願い致します。 条件x[1]=1,x[n+1]=x[n]+・・・ (1)条件x[1]=1,x[n+1]=x[n]+2^2(n=1,2,3,・・・)によって定められる数列{xn}の一般項はx[n]=□である。 (2)条件y[1]=4/3, 1/y[n+1]=4/y[n] + 3/4 (n=1,2,3,・・・)によって定められる数列{yn}の 一般項はy[n]=□である。 漸化式の問題です。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム e^x-(x^0/0!+…+x^n/n!)>0 f[n](x)=e^x-(x^0/0!+x^1/1!+…+x^n/n!)>0を示せ n=0のとき成立 n=kのとき成立すると仮定すると n=k+1のときf[k+1](x)=f[k](x)-x^(k+1)/(k+1)!となったのですがこれが0より大きいと示す方法が分かりません 教えてください sum_(n=1)^(∞) [ (r^n) / n ] の値 -1 < r < 1 という条件において、 Σ_(n=1)^(∞) [ (r^n) / n ] Σ_(n=1)^(∞) [ (r^n) / (n^2) ] というのは解析的に求めることができるのでしょうか? 求まるとしたら、どんな式になるのでしょうか? どちらも |r|<1 なら収束半径内に収まっているので値はあるのでしょうけど…どうも求まりません。 高校のときに使った常套手段で、 X = Σ_(n=1)^(∞) [ (r^n) / n ] とおいて rX - X などで求めようとしましたが r が消去できず無理でした。 当方大学院生ですので、高校の範囲内の解法でなくても大丈夫です。 どうか、よろしくお願いします。 x^nをx^2+x-2で割ったときの余り x^nをx^2+x-2で割ったときの余りを求めよ。 m nは正の整数とする。 という問題で、その前の問題で、 x^(3m) + 1を X^3で割ったあまりを求めていて それが x^(3m) + 1=(x^3-1)(xの整式)+2 =(X-1)(X^2+X+1)Q(X)+2・・・(1) (Q(X)はXの整式)でした。 解答では、この式利用して、 x^nのnをn=3m 、3m+1 、3m+2、 の時で場合わけをしていて、(1)の式を変形してそれぞれの余りを求めていました。 この場合わけはいったいどこからきたのでしょうか? 別の問題なのですが、 整式x^nをx^5-1で割った余りを求める問題で(nは自然数) 二項定理による変形で n=5m+rとして m=0,2,3,・・・・ r=0,1,2,3,4,5 として x^5-1=(x^5-1)(xの整式)+x^r と変形して、r=1~4の時は余りは r^5 r=5 のときは1 として求めていたんですが、今回の問題も同じように nをn=3m 、3m+1 、3m+2ではなくn=3m+r と変形して求めたりはしないのでしょうか? (1)一点集合{X}⊂R^n(X∈R^n) (1)一点集合{X}⊂R^n(X∈R^n) (2)S(X,r)={Y∈R^n;|X-Y|<r} の内点が存在しないことは感覚的には分かるのですが,これを綺麗に示すとしたらどうすればよいでしょうか? 任意の点について,そのε近傍自体がもとの集合に丸ごと入るようなε>0が存在しないことを言えばいいと思うのですが,それを言葉で綺麗に表現できません. よろしく願いします. e^x-(x^0/0!+…+x^n/n!)>0 f[n](x)=e^x-(x^0/0!+x^1/1!+…+x^n/n!)>0を示せ n=0のとき成立 n=kのとき成立すると仮定すると n=k+1のときf[k+1](x)=f[k](x)-x^(k+1)/(k+1)!となってこれが正を示すときに別の質問で(f[k+1](x))'を使って増減表を書くと聞いたのですが(f[k+1](x))'=e^x-(x^0/0!+x^1/1!+…+x^k/k!)が0になる場所はわかるのでしょうか? lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束 こんにちは。 [問] lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束する事を示せ。 [証] |a_nx^n|≦|a_nr^n| (∵x<r) 且つ (Σ[n=1..∞]|a_nr^n|=)Σ[n=1..∞]|a_n|r^nが収束。 が言えれば Weierstrassの一様収束の定理「∀x∈I(Iは区間)|a_k(x)|≦c_k且つΣ[k=1..∞]c_kが収束 ⇒Σ[k=1..∞]a_k(x)はIで一様且つ絶対収束する」 が使えて Σ[n=1..∞]a_nx^nは一様収束する。 と示せるのですが「Σ[n=1..∞]|a_n|r^nが収束」がどうしても言えません。 どうすれば「Σ[n=1..∞]|a_n|r^nが収束」が言えますでしょうか? lim[n→∞]|a_n|^(1/n)=1(収束半径は1)からは「Σ[n=1..∞]a_nr^nが収束」しか言えませんよね。 f(n)=(1)^n+(2)^n+(3)^n+(4)^n nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。 x=Ux'という形を満たすn×n直交行列Uの存在? こんにちは。 R^n∋x:=(x_1,x_2,…,x_n)^T≠0をn次ベクトルとすると, x=Ux' (ただし,x':=(x'_1,x'_2,…,x'_{n-m},0,…,0)^T∈R^n, 1<m<n)という形を満たす n×n直交行列Uの存在を示したいのですがどうすればいいでしょうか? なお, 「^T」は転置を表します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
分かりました ありがとうございました