- ベストアンサー
Σの計算
Σ(K=1,n)1/(k(k+2) =1/2Σ(k=1,n)(1/k - 1/k+2) =1/2((1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+…+(1/n-1 - 1/n+1)+(1/n - 1/n+2) で計算すると最後の分母が大きい2項が残るそうですがそれについて把握ができません。 もし Σ(K=1,n)1/(k(k+3)という問題でしたら計算をすると最後の分母が大きい3項が残るのでしょうか?
- みんなの回答 (2)
- 専門家の回答
Σ(K=1,n)1/(k(k+2) =1/2Σ(k=1,n)(1/k - 1/k+2) =1/2((1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+…+(1/n-1 - 1/n+1)+(1/n - 1/n+2) で計算すると最後の分母が大きい2項が残るそうですがそれについて把握ができません。 もし Σ(K=1,n)1/(k(k+3)という問題でしたら計算をすると最後の分母が大きい3項が残るのでしょうか?
お礼
わかりました。 ありばとうございます。