ベストアンサー n!≦{(n+1)/2}^n 2012/03/03 22:32 nは自然数とする。 n!≦{(n+1)/2}^n の証明をどうか教えていただけますようお願いいたします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー kabaokaba ベストアンサー率51% (724/1416) 2012/03/03 23:04 回答No.1 n=1 1!=1={(1+1)/2}^1 n-1のとき (n-1)!<= (n/2)^{n-1}と仮定 n! = (n-1)! n <= (n/2)^{n-1} n = (n/2)^{n-1} 2(n/2) = 2(n/2)^n ((n+1)/2)^n / 2(n/2)^n = (1/2) ((n+1)/n)^n = (1/2) (1+(1/n))^n (1+(1/n))^n を二項定理で展開すると (1+(1/n)^n > 2 であることがわかるので ((n+1)/2)^n / 2(n/2)^n > 1 つまり 2(n/2)^n < ((n+1)/2)^n よって証明できた. 質問者 お礼 2012/03/03 23:56 よくわかりました。まことにありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) ringohatimitu ベストアンサー率59% (111/187) 2012/03/03 23:12 回答No.2 相加相乗平均でも示せますね。 (1*2*...*n)^{1/n} ≦ (1+2+...+n)/n=(n+1)/2 質問者 お礼 2012/03/03 23:55 ありがとうございます。これも相加相乗で解けるとは気づきませんでした。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A f(n)=(1)^n+(2)^n+(3)^n+(4)^n nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。 nを自然数とするとき、n^5/5+n^4/2+n^3/3-n/30が自然数であることを証明せよ。 高校数学の教科書の数列のところの一番最後の一番難しい章末問題で nを自然数とするとき、n^5/5+n^4/2+n^3/3-n/30が自然数であることを証明せよ。 って問題なんですが、とりあえず数学的帰納法で解くんだろうけど全然解けそうにないです。 月曜日までにやってこないとやばいので、だれか助けてください!! 数列 n^(1/n) が収束することを… 数列 n^(1/n) ( n の n 乗根,n は自然数)が収束することを 証明したいのですが、どうすればいいのでしょうか? 教えて下さい。 極限が1であることは何となく分かるのですが、 収束することをうまく証明できません。 もし方法が複数あるなら、できるだけたくさん知りたいです。 一応大学生なのである程度難しくても理解できるよう がんばりますのでよろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム mを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)がm(m+1)で割り切れる mを自然数,nを奇数とするとき,2(1^n+2^n+…+m^n)が m(m+1)で割り切れることを証明したいのですが、あることに気づく必要があるといわれたのですが、それがどうもよくわかりません。 また、nが偶数のときには、何か別の性質があるのでしょうか? 2^n>n^n 2^n>n^nが成り立つ自然数の範囲を示せ。一応k>2、4<kとでましたが、それを数学的帰納法でしょうめいするように言われたがわかりません。おしえてください。 {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 n → ∞のとき、 {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 また、n → ∞のとき、 {√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8 らしいのですが、証明がかいてありませんでした。 どうか証明を教えていただけないでしょうか。 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 となりますが、これを図形を用いて証明することはできないのでしょうか? どなたかよいアイディアがあれば教えてください。 (n!)^2≧n^n(nは自然数) (n!)^2≧n^n(nは自然数) この不等式の証明なのですが、第1手が分かりません。 両辺対数を取り、移行してnの関数と見て微分に持ち込もうとしたのですが、nが1に近付くと変数として扱えば良いのか定数として扱えば良いのか分からず断念。 そのまま(左辺)/(右辺)の形にして各項の評価も試みましたが、上手く行かず…。 分かる方がいらっしゃいましたら、何かヒントをお願いしたいです。 【対数】log(2)n=n-1となるnを求める問題 はじめまして。 題の通りなのですが、nを自然数とするときにlog(2)n=n-1を満たすnの値は求められますか? 2^(n-1)=nと変形はしたのですが、ここから動きません 【問題】lim[n→∞]{1/n(1/√2+2/√5+・・・+n/√( 【問題】lim[n→∞]{1/n(1/√2+2/√5+・・・+n/√(n^2+1))} ただしnは自然数とする。 ≪自分の解答≫ lim[n→∞](1/n)*?[k=1~n](k/√(k^2+1)) =lim[n→∞](1/n)*?[k=1~n]{(k/n)/√((k/n)^2+1/n^2)} というところまで やってみたのですが… どうしたらいいでのしょうか?? n^2+3n+8とn+2の最大公約数 高校数学の問題です 「nは自然数とする。n^2+3n+8とn+2の最大公約数として考えられる数を全てもとめよ」 この問題の解き方をどなたか教えてください。 ( n(n+1)(2n+1) )/6 の証明について 1^2 + 2^2 + ... + n^2 = ( n(n+1)(2n+1) )/6 の証明についてです 3(1^2 + 2^2 + ... + n^2) =(n+1)^3 -1 -(3n(n+1))/2 -n =(n+1)^3 - (3n/2)(n+1) - (n+1) <<このあたりの計算は中略>> =(n+1)((1/2)n(2n+1)) ∴ ( (n+1)((1/2)n(2n+1)) )/3 =( n(n+1)(2n+1) )/6 よって 1^2 + 2^2 + ... + n^2 =( n(n+1)(2n+1) )/6 こんな出だしの証明になっているのですがどうでしょうか? いきなり全体に3をかけて 3(1^2 + 2^2 + ... + n^2) という出だしになっていますが、これでもOKでしょうか? どうぞアドバイスよろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム Γ(n+1/2)≒n!/√nの証明 Γ(n+1/2)≒n!/√nを証明する前にΓ(n+1/2)=(2n)!√π/((4^n)・(n!))を証明しました。これとスターリンの公式を使用してΓ(n+1/2)≒n!/√nを導けという問題が出題されたのですが解けなくて困っています。 どなたかわかる方ご指導お願いします。 𝓃(𝓃-1) (2𝓃-1)は6の倍数である kを使わずに(2𝓃-1)を変形して証明を導くのが正攻法ですが、すべての整数𝓃が 𝓃=2k, 𝓃=2k+1 、𝓃=3k, 𝓃=3k+1 , 𝓃=3k+ 2(kは整数)で表されることから(𝓃-1) (2𝓃-1)をkで表して証明しようとしたのですがうまくいきません。 n(n-1)-5=1? お世話になってます。数学なんですが・・・よくわからないので質問させてください。 p=n^2(n-1)^2-25は・・・(pは素数) {n(n-1)+5}{n(n-1)-5}で n(n-1)+5=n^2-n+5=(n-1/2)^2+19/4になるみたいなんですが、 なぜ最後に19/4になるのかがわかりません。 スラッシュは、割るという意味ではなく分数を表しています。 数学に詳しい方ぜひ教えてください。 n!の終わりに並ぶ0の個数はn/4未満 n! を計算したとき,終わりに並ぶ0の数を N とする.次の問いに答えよ. (1) N を求めよ. (答)Σ[k=1,∞] [ n/5^k ] (ただし、[ ] はガウス記号) (2) N<n/4 を証明せよ. (1)は分かったのですが、(2)が分かりません。 {9^(n+1)-8n-9}/64になる証明 {9^(n+1)-8n-9} (n=正の整数) という数字が64で割れることを二項定理を使って証明したいのですが、分かりません。 自分でやってみたところ、 (1+8)^n=…… ↓ 9^n-8n-1=64k ↓ 9^(n+1)-8n*9-9=64k*9 というところまで、できましたが次何すればいいのかわかりません。 回答お願いします。 N個ある自然数の合計が100のときのN N個ある任意の自然数の合計が100のとき、Nが最も取りうる 可能性が高い値はいくらですか? lim[n→∞](1-1/n)^n=1/e について こんにちは lim[n→∞](1+1/n)^n=e が成り立つことは簡単に示せるのですが、 lim[n→∞](1-1/n)^n=1/e となることの証明はどのようにすればいいのでしょうか? ご存知の方がいらっしゃいましたらご回答よろしくお願いします。 証明: n≧4のとき、2^n<n! 次の等式を証明せよ。 n≧4のとき、2^n<n! という問題があったのですが、これを帰納法を使わないで証明を与えるとするなら、どのような方法が考えられますか? できれば参考書的でないものがいいのですが・・・。 チャートでは 2^n<n!⇔n!/2^n>1 と変形して解いていました。 きれいな形をしているだけにさまざまな方法があると思いますがどなたかご教授ください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
よくわかりました。まことにありがとうございます。